Home
Class 12
MATHS
int(0)^(1)e^(2x)e^(e^(x) dx =)...

`int_(0)^(1)e^(2x)e^(e^(x) ` dx =)

A

`e^(e)(2e-1)`

B

`e^(e)(e-1)`

C

`e^(2e)(e-1)`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B

`I=int_(0)^(1)e^(2x)e^(e^(x))dx`
Let `e^(x)=1`
`rArr" "I=int_(0)^(e)te^(t)dt=(te^(t)-e^(t))_(1)^(e)=e^(e)(e-1)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Show that int_(0)^(1)(e^(x))/(1+e^(2x))dx=tan^(-1)(e)-pi/(4)

Evaluate int_(0)^(1)(e^(-x)dx)/(1+e^(x))

Evaluate int_(0)^(1) (e^(x))/( 1+ e^(2x)) dx

Evaluate: int_(0)^(1)e^(-2x)(1+x-2x^(3)) dx.

Evaluate the following : int_(0)^(1) x^(3) e^(-2x) dx

Evaluate int_(0)^(1) e^(-x)(1+x^2)dx .

int_(0)^(pi/2)e^(-x) sinx dx is

The value of int_(0)^(oo) e^(-3x) x^(2) dx is

Evaluate int_0^1(e^x)/(1+e^(2x)) dx

int_(0)^(prop) e^(-3x)x^(4)dx= .