Home
Class 12
MATHS
The value of difinite integral int(0)^(1...

The value of difinite integral `int_(0)^(1) (dx)/(sqrt((x+1)^(3)(3x+1)))` equals

A

`sqrt2-1`

B

`tan.(pi)/(12)`

C

`tan.(5pi)/(12)`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the definite integral int_(0)^(1)(dx)/(sqrt(1-x^(2)))

Evaluate the definite integrals int_(0)^(1)(dx)/(sqrt(1+x^(2)))

Evaluate the definite integrals int_(0)^(1)(dx)/(sqrt(1+x)-sqrtx)

evaluate the integrals int_(0)^(1)x(1-x)dx

Evaluate the definite integrals int_(2)^(3)(dx)/(x^(2)-1)

Evaluate the definite integrals int_(0)^(1)(2x+3)/(5x^(2)+1)dx

Evaluate the definite integral int_(2)^(3)(dx)/(1+x^(2))

The value of the definite integral int_(0)^(1)(1+e^(-x^(2))) dx is

The value of the integral int_-2^(2) |1-x^2|dx is

Evaluate int_(0)^(1)(dx)/(sqrt(x+1)+sqrt(x)) .