Home
Class 12
MATHS
If f(x) is continuous and int(0)^(9)f(x)...

If f(x) is continuous and `int_(0)^(9)f(x)dx=4`, then the value of the integral `int_(0)^(3)x.f(x^(2))dx` is

A

2

B

18

C

16

D

4

Text Solution

Verified by Experts

The correct Answer is:
A

Let `I=int_(0)^(3)x.f(x^(2))dx`
Put `x^(2)=t`
`rArr" "2x.dx=dt`
`rArr" "I=(1)/(2)int_(0)^(9)f(t)dt=(1)/(2).4=2`
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(a)^(b) f(x) dx =

If f(x) is even then int_(-a)^(a)f(x)dx ….

Evaluate the definite integral int_(0)^(1)(4x^(3)+3x^(2)-2x-1)dx

If f(x)=x+int_0^1 t(x+t) f(t)dt, then find the value of the definite integral int_0^1 f(x)dx.

Evaluate the definite integrals int_(1)^(2)(4x^(3)-5x^(2)+6x+9)dx

Let f(x) be a continuous and periodic function such that f(x)=f(x+T) for all xepsilonR,Tgt0 .If int_(-2T)^(a+5T)f(x)dx=19(ag0) and int_(0)^(T)f(x)dx=2 , then find the value of int_(0)^(a)f(x)dx .

If int_(0)^(x^(2)(1+x))f(t)dt=x , then the value of f(2) is.

Evaluate the following definite integrals int_(0)^(4)(x+2)dx

If int_0^x(f(t))dt=x+int_x^1(t^2.f(t))dt+pi/4-1 , then the value of the integral int_-1^1(f(x))dx is equal to

If f(x)=(2-xcosx)/(2+xcosx)andg(x)= "log"_(e)x, (xgt0) then the value of the integral int_(-pi//4)^(pi//4)g(f(x)) dx is