Home
Class 12
MATHS
lim(trarr0) int(0)^(2pi)(|sin(x+t)-sinx|...

`lim_(trarr0) int_(0)^(2pi)(|sin(x+t)-sinx|)/(|t|)dx` equals

A

a) 2

B

b) 4

C

c) 1/4

D

d) 1

Text Solution

Verified by Experts

The correct Answer is:
B

`underset(trarr0)(lim)int_(0)^(2pi)|(sin(x+t)-sinx)/(t)|dx`
`=int_(0)^(2pi)(underset(trarr0)(lim)|(2cos(x+(t)/(2))sin(t)/(2))/(t)|)dt`
`=int_(0)^(2pi)|cosx|dx=4`
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(pi)(cosx)/(1+sinx)dx=

Evaluate int_(0)^(pi)(sin 6x)/(sinx) dx .

If a, b and c are real numbers, then the value of lim_(trarr0) ln((1)/(t)int_(0)^(t)(1+asinbx)^(c//x)dx) equals

The integral int_(0)^(pi)sqrt(1+4"sin"^(2)x/2-4"sin"x/2)dx equals

Evaluate int_(0)^(pi/2)(sinx/(cosx+sinx))dx

int_(0)^(pi/2)e^(-x) sinx dx is

Evaluate int_(0)^(pi)(cosx/(1+sinx))dx

lim_(xrarr0) (int_(0)^(x)(t^(2))/(sqrt(a+t))dt)/(x-sinx)=1(agt0) . Then the value of a is

Evaluate int_(0)^(pi/2)sinx/(cosx+sinx)dx .

Evaluate int_(0)^(pi)(x)/(1+sinx) dx.