Home
Class 12
MATHS
u=int0^(pi/2)cos((2pi)/3sin^2x)dx and v=...

`u=int_0^(pi/2)cos((2pi)/3sin^2x)dx` and `v=int_0^(pi/2) cos(pi/3 sinx) dx`

A

2u = v

B

2u = 3v

C

u = y

D

u = 2v

Text Solution

Verified by Experts

The correct Answer is:
A

`u=int_(0)^(pi//2)cos((2pi)/(3)sin^(2)x)dx`
`u=int_(0)^(pi//2)cos((2pi)/(3)cos^(2)x)dx`
`rArr" "2u=int_(0)^(pi//2)[cos((2pi)/(3)sin^(2)x)+cos((2pi)/(3).cos^(2)x)]dx`
`rArr" "2u=int_(0)^(pi//2)2cos.(pi)/(3).cos((pi)/(3)cos2x)dx`
`rArr" "u=(1)/(2)int_(0)^(pi)cos((pi)/(3)cost)dt" [Put 2x = t]"`
`=int_(0)^(pi//2)cos((pi)/(3)cost)dt`
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(pi/2)e^(-x) sinx dx is

IfI_1=int_0^(pi/2)(cos^2x)/(1+cos^2x)dx ,I_2=int_0^(pi/2)(sin^2x)/(1+sin^2x)dx I_3=int_0^(pi/2)(1+2cos^2xsin^2x)/(4+2cos^2xsin^2x)dx ,t h e n I_1=I_2> I_3 (b) I_3> I_1=I_2 I_1=I_2=I_3 (d) none of these

int _0^(pi/2) (sin^2x)/(sinx+cosx)dx

Evaluate : int_0^(pi/2) (sinx+cosx) dx

int_0^1(tan^(-1)x)/x dx is equals to int_0^(pi/2)(sinx)/x dx (b) int_0^(pi/2)x/(sinx)dx 1/2int_0^(pi/2)(sinx)/x dx (d) 1/2int_0^(pi/2)(""x)/(sinx)dx

Evaluate int_(0)^(pi//6) cos^(7) 3x dx

IfI_I=int_0^(pi//2)cos(sinx)dx ,I_2=int_0^(pi/2)sin(cosx)d ,a n dI_3=int_0^(pi/2)cosx dx , then find the order in which the values I_1,I_2,I_3, exist.

Evaluate: int_0^(pi/2)xcotx dx

int_(0)^(pi//2)sinx sin2x sin3x sin 4x dx=