Home
Class 12
MATHS
int(0)^(100pi)(sum(r=1)^(10)tanrx)dx is ...

`int_(0)^(100pi)(sum_(r=1)^(10)tanrx)dx` is equal to

A

0

B

`100pi`

C

`-50pi`

D

`50pi`

Text Solution

Verified by Experts

The correct Answer is:
A

`I=int_(0)^(100pi)(tanx+tan2x+tan3x+...+tan10x)dx`
Period of `f(x)=tanx+tan2x+...+tan10x" is "pi`
`therefore" "I=100int_(0)^(pi)(tanx+tan2x+tan3x+...+tan10x)dx`
Now, `f(x)=-f(pi-x)`
`therefore" "I=0`
Promotional Banner

Similar Questions

Explore conceptually related problems

sum_(r=0)^(300)a_r x^r=(1+x+x^2+x^3)^(100)dot If a=sum_(r=0)^(300)a_r ,t h e nsum_(r=0)^(300)r a_r is equal to 300 a b. 100 a c. 150 a d. 75 a

Statement I: The value of the integral int_(pi//6)^(pi//3) (dx)/(1+sqrt(tanx)) is equal to (pi)/6 . Statement II: int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx

int_(0)^(pi)(cosx)/(1+sinx)dx=

If fx=x+sinx , then int_(pi)^(2pi)f^(-1)(x)dx is equal to

IF f(x+f(y))=f(x)+y AA x, y in R and f(0)=1 , then int_(0)^(10)f(10-x)dx is equal to

int_(0)^((pi)/(2))(dx)/(1+sqrt(tanx)) is :

If int_(0)^(100) f(x)dx=7, then sum_(r=1)^(100)int_(0)^(1)(r-1+x)dx= _________.

int_(0)^(1)x(1-x)^(10)dx .

The value of sum_(r=1)^n(sum_(p=0)^(r-1) ^nC_r ^rC_p 2^p) is equal to

int_(0)^(pi)|cosx|^(3) dx is equal to (a) (4)/(3) (b) (2)/(3) (c) 0 (d) (-8)/(3)