Home
Class 12
MATHS
f:[0,5]rarrR,y=f(x) such that f''(x)=f''...

`f:[0,5]rarrR,y=f(x)` such that `f''(x)=f''(5-x)AAx in [0,5] f'(0)=1 and f'(5)=7`, then the value of `int_(1)^(4)f'(x)dx` is

A

4

B

6

C

8

D

10

Text Solution

Verified by Experts

The correct Answer is:
C

`int_(1)^(4)f'(x)dx=[xf'(x)]_(1)^(4)-int_(1)^(4)xf''(x)`
Now `I=int_(1)^(4)xf''(x)dx=int_(1)^(4)(5-x)f''(5-x)dx`
`=5int_(1)^(4)f''(x)dx=-I`
`therefore" "I=(5)/(2)[f'(4)-f'(1)]`
`therefore" "int_(1)^(4)f'(x)dx=(3)/(2)[f'(4)+f'(1)]`
Now, `f''(x)=f''(5-x)`
`rArr" "f'(x)=-f'(5-x)+c`
`rArr" "f'(0)+f'(5)=c rArr c=8`
`"so "f'(x)+f'(5-x)=8 rArr f'(4)+f'(1)=8`
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(0)=1,f(2)=3,f^'(2)=5 ,then find the value of int_0^1xf^('')(2x)dx

If f(x+f(y))=f(x)+yAAx ,y in Ra n df(0)=1, then find the value of f(7)dot

If g(x) is the inverse of f(x) and f(x) has domain x in [1,5] , where f(1)=2 and f(5) = 10 then the values of int_1^5 f(x)dx+int_2^10 g(y) dy equals

If f is a real valued function such that f(x+y) = f(x) + f(y) and f(1)=5, then the value of f(100) is

Let f(x+1/y) +f(x-1/y) =2f(x) f(1/y) AA x, y in R , y!=0 and f(0)=0 then the value of f(1) +f(2)=

If f(x)=min(|x|,1-|x|,1/4)AAx in R , then find the value of int_(-1)^1f(x)dxdot

If f'(x)=f(x)+int_(0)^(1)f(x)dx ,given f(0)=1 , then the value of f(log_(e)2) is

Let f: R->R be a continuous function and f(x)=f(2x) is true AAx in Rdot If f(1)=3, then the value of int_(-1)^1f(f(x))dx is equal to (a)6 (b) 0 (c) 3f(3) (d) 2f(0)

If f(x) is continuous and int_(0)^(9)f(x)dx=4 , then the value of the integral int_(0)^(3)x.f(x^(2))dx is

If f''(x)=12x-6 and f(1)=30, f'(1)=5 find f(x) .