Home
Class 12
MATHS
int(-pi//4)^(pi//4) \ (e^x sec^2 \ dx)/(...

`int_(-pi//4)^(pi//4) \ (e^x sec^2 \ dx)/(e^(2x)-1)` is equal to (i)`0` (ii)`2` (iii)`e` (iv)none of these

A

0

B

2

C

e

D

2e

Text Solution

Verified by Experts

The correct Answer is:
A

Let `int_(-(pi)/(4))^((pi)/(4))(e^(x)sec^(2)xdx)/(e^(2x)-1)`
If `f(x)=(e^(x)sec^(2)x)/(e^(2x)-1)`
`therefore" "f(-x)=(e^(-x)sec^(2)x)/(e^(-2x)_1)`
`=(e^(x)sec^(2)x)/(1-e^(2x))`
`=(e^(x)sec^(2)x)/(e^(2x)-1)`
`=-f(x)`
`therefore` f(x) is an odd functions.
`therefore" I=0`
Promotional Banner

Similar Questions

Explore conceptually related problems

int(dx)/(e^(x)+e^(-x)) is equal to

The value of int_(-pi//2)^(pi//2)(x^(2)cosx)/(1+e^(x)) d x is equal to

Evaluate: int_(pi//6)^(pi//4)(1+cotx)/(e^(x)sinx) dx

Evaluate: int_(-pi//2)^(pi//2)(cosx)/(1+e^x)dx

int_(-pi/2)^(pi/2)(e^(|sinx|)cosx)/(1+e^(tanx))dx is equal to (a) e+1 (b) 1-e (c) e-1 (d) none of these

int(e^x)/(e^(2x)+4)dx

int_0^oo(x dx)/((1+x)(1+x^2)) is equal to (A) pi/4 (B) pi/2 (C) pi (D) none of these"

The value of the integral int_(-(3pi)/4)^((5pi)/4)((sinx+cosx)/(e^(x-pi/4)+1))dx (A) 0 (B) 1 (C) 2 (D) none of these

int_(0)^(pi/2)e^(-x) sinx dx is

The integral int_(pi//6)^(pi//3)sec^(2//3)x " cosec"^(4//3)x dx is equal to