Home
Class 12
MATHS
If int(0)^(4pi)ln|13sinx+3sqrt3cosx|dx=k...

If `int_(0)^(4pi)ln|13sinx+3sqrt3cosx|dx=kpiln7`, then the value of k is

A

2

B

4

C

8

D

16

Text Solution

Verified by Experts

The correct Answer is:
B

`int_(0)^(4pi)ln|13sinx+3sqrt3cosx|dx`
`=4int_(0)^(4pi)ln|14sin(x+tan^(-1).(3sqrt3)/(13))|dx`
`=8int_(0)^(pi//2)(ln14+log|sinx|)dx`
`=4pi(ln14-ln2)=4piln7.`
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(0)^(4pi)log_(e)|3sinx+3sqrt(3) cos x|dx then the value of I is equal to

Evaluate: int_0^(pi/2)|sinx-cosx|dx

int_(0)^(pi//2)sinx sin2x sin3x sin 4x dx=

If int_a^b|sinx|dx=8 and int_0^(a+b)|cosx| dx=9 , then find the value of int_a^b xsinx dx .

IfI=int_0^((3pi)/5)(1+x)sinx+(1-x)cosx)dx , then value of (sqrt(2)-1)I is_____

int _0^(pi/2) (sin^2x)/(sinx+cosx)dx

G i v e nint_0^(pi/2)(dx)/(1+sinx+cosx)=log2. Then the value of integral int_0^(pi/2)(sinx)/(1+sinx+cosx)dx is equal to (a) 1/2log2 (b) pi/2-log2 (c) pi/4-1/2log2 (d) pi/2+log2

int_(0)^(pi)(cosx)/(1+sinx)dx=

Evaluate: int_(0)^(pi/4)(1)/(sinx+cosx) dx.

Evaluate int_(0)^(pi/2)sinx/(cosx+sinx)dx .