Home
Class 12
MATHS
If A(x+y)=A(x)A(y) and A(0) ne 0 and B(...

If `A(x+y)=A(x)A(y) and A(0) ne 0 and B(x)=(A(x))/(1+(A(x))^(2))`, then

A

`int_(-2010)^(2010)B(x)dx=int_(0)^(2011)B(x)dx`

B

`int_(-2010)^(2011)B(x)dx=int_(0)^(2010)B(x)dx+int_(0)^(2011)B(x)dx`

C

`int_(-2010)^(2011)B(x)dx=0`

D

`int_(-2010)^(2010)(2B(-x)-B(x))dx=2int_(0)^(2010)B(x)dx`

Text Solution

Verified by Experts

The correct Answer is:
B:D

`A(x+y)=A(x)A(y)`
`rArr" "A(0+0)=A(0)A(0)`
`rArr" "A(0)=1`
Put `y=-x,` we get
`A(0)=A(x)A(-x)" (i)"`
`B(-x)=(A(-x))/(1+(A(-x))^(2))`
`=((1)/(A(x)))/(1+(1)/((A(x))^(2)))`
`=(A(x))/(1+(A(x))^(2))`
= B(x)
Thus, B(x) is even.
`int_(-2010)^(2011)B(x)dx=int_(-2010)^(2010)B(x)dx+int_(2010)^(2011)B(x)dx`
`=2int_(0)^(2010)B(x)dx+int_(2010)^(2011)B(x)dx`
`=int_(0)^(2010)B(x)dx+int_(0)^(2011)B(x)dx`
Promotional Banner

Similar Questions

Explore conceptually related problems

If A={(x,y)/y=e^x.x in [0,oo)} and B={(x,y)/y=sinx, x in [0,oo)} then n(AcapB) is?

cos ((dy)/(dx)) = a (a ne R), y = 2 when x = 0

If y= x+(1)/(x), x ne 0 , then the equation (x^(2)-3x+1)(x^(2)-5x+1)=6x reduces to

Let g(x,y) = (x^(2)y)/(x^(4) + y^(2)) for (x,y) ne (0,0) and f(0,0)=0. (i) Show that lim_((x,y) to (0,0)) g(x,y)=0 along every line y=mx, m in R . (ii) Show that lim_((x,y) to (0,0)) g(x,y) = k/(1+k^(2)) , along every parabola y=kx^(2), k in R{0} .

Let g(x,y) = (e^(y) sin x)/x , for x ne 0 and g(0,0) =1. Show that g is continous at (0,0).

If f (x) = (x- 1)/( x+1) x ne 1 Show that f(f(x) ) = (1)/(x) provided x ne 0

If set A and B are defined as A = {(x,y)|y = 1/x, 0 ne x in R}, B = {(x,y)|y = -x , x in R,} . Then

The solution of the primitive integral equation (x^2+y^2)dy=x y dx is y=y(x)dot If y(1)=1 and y(x_0)=e , then x_0 is