Home
Class 12
MATHS
The value of int(e)^(pi^(2))[log(pi)x]d(...

The value of `int_(e)^(pi^(2))[log_(pi)x]d(log_(e)x)` (where [.] denotes greatest integer function) is

A

`2log_(e)pi`

B

`log_(e)pi`

C

1

D

0

Text Solution

Verified by Experts

The correct Answer is:
B

Let `log_(e)x=t`
`I=int_(1)^(log_(e)pi^(2))[log_(pi)e^(t)]dt`
`rArr" "I=int_(1)^(log_(e)pi^(2))[tlog_(pi)e]dt=int_(1)^(log_(e)pi)0dt+int_(log_(e)pi)^(2log_(e)pi)1dt=log_(e)pi`
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(pi)[cotx]dx, where [.] denotes the greatest integer function, is equal to

Prove that int_(-pi/2)^(2pi)[cot^(-1)x]dx ,where [dot] denotes the greatest integer function.

Evaluate int_(0)^(3) [x]dx ,where [.] denotes the greatest integer function.

Evaluate int_(1)^(a)x.a^(-[log_(e)x])dx,(agt1) .Here [.] represents the greatest integer function.

Evaluate int_(2)^(5)(x+[x])dx ,where [.] denotes the greatest integer function.

Evaluate: int_0^((5pi)/(12))[tanx]dx , where [dot] denotes the greatest integer function.

Evaluate int_(-1)^(1)[x+[x+[x]]]dx , where [.] denotes the greatest integer function

Evaluate int_(-1)^(3) [x]dx ,where [.] denotes the greatest integer function.

The range of sin^(-1)[x^2+1/2]+cos^(-1)[x^2-1/2] , where [.] denotes the greatest integer function, is {pi/2,pi} (b) {pi} (c) {pi/2} (d) none of these