Home
Class 12
MATHS
int(1//3)^(3)(1)/(x)log(e)(|(x+x^(2)-1)/...

`int_(1//3)^(3)(1)/(x)log_(e)(|(x+x^(2)-1)/(x-x^(2)+1)|)dx` is equal to

A

`(8)/(3)`

B

`-(8)/(3)`

C

0

D

3

Text Solution

Verified by Experts

The correct Answer is:
C

`I=int_(1//3)^(2)(1)/(x)log_(e)(|(x+x^(2)-1)/(x-x^(2)+1)|)dx`
Let `x=(1)/(t)rArr dx =-(1)/(t^(2))dt`
`rArr" "I=-int_(3)^(1//3)tlog_(e)(|((1)/(t)+(1)/(t^(2))-1)/((1)/(t)-(1)/(t^(2))+1)|)(1)/(t^(2))dt`
`" "=int_(1//3)^(3)(1)/(t)log_(e)(|(t-t^(2)+1)/(t+t^(2)-1)|)dt`
`" "=-int_(1//3)^(3)(1)/(x)log_(2)(|(x+x^(2)-1)/(x-x^(2)+1)|)dx`
`rArr" "I=-IrArr I=0`
Promotional Banner

Similar Questions

Explore conceptually related problems

int(x^(3)-1)/(x^(3)+x) dx is equal to:

int e^(x)((x^(2)+1))/((x+1)^(2))dx is equal to

int x.2^(ln(x^(2)+1))dx is equal to

int(1)/((1+sqrtx)sqrt(x-x^(2)))dx is equal to

int(x^3-x)/(1+x^6)dx is equal to

int e^(sin^(-1)x)((log_(e)x)/(sqrt(1-x^(2)))+(1)/(x))dx is equal to

[The value of "int(sqrt(x^(2)+1){log_(e) (x^(2)+1)-2log_(e)x})/(x^(4))dx" is equal to "],[" (a) "(2)/(3)(1+(1)/(x^(2)))^(3/2)*{log(1+(1)/(x^(2)))-(2)/(3)}+C],[" (b) "-(1)/(3)(1+(1)/(x^(2)))^(3/2)*{log(1+(1)/(x^(2)))-(2)/(3)}+C],[" (c) "(1+(1)/(x^(2)))^(3/2)*{log(1+(1)/(x^(2)))+(2)/(3)}+C ]

int_(1)^(2)(1/(x)-(1)/(2x^(2)))e^(2x)dx

int (1+2x^(6))/((1-x^(6))^(3//2))dx is equal to

int(dx^(3))/(x^(3)(x^(n)+1)) equals