Home
Class 12
MATHS
A function f(x) satisfie f(x)=f((c)/(x))...

A function f(x) satisfie `f(x)=f((c)/(x))` for some real number c( gt 1) and all positive number 'x'. If `int_(1)^(sqrtc)(f(x))/(x)dx=3`, then `int_(1)^(c)(f(x))/(x)dx` is

A

4

B

6

C

8

D

9

Text Solution

Verified by Experts

The correct Answer is:
B

`I=int_(1)^(c)(f(x))/(x)dx=int_(1)^(sqrtc)(f(x))/(x)dx+int_(sqrtc)^(c)(f(x))/(x)dx`
Put `x=(c)/(t)` in second integral
`rArr" "dx=-(c)/(t^(2))dt`
`therefore" "I=int_(1)^(sqrtc)(f(x))/(x)dx+int_(sqrtc)^(1)(f((c)/(t)))/(t)(-dt)`
`" "=int_(1)^(sqrtc)(f(x))/(x)dx+int_(1)^(sqrtc)(f(x))/(x)dx=6`
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) is even then int_(-a)^(a)f(x)dx ….

If int f (x) dx = g (x) +c, then int f(x)g' (x)dx

Evaluate int_(0)^(a)(f(x))/(f(x)+f(a-x)) dx.

If int(dx)/(x^(2)+ax+1)=f(g(x))+c, then

If int f(x)dx=psi(x) , then int x^5f(x^3)dx

Let f: R rarr R be a differentiable function satisfying f(x+y)=f(x)+f(y)+x^(2)y+xy^(2) for all real numbers x and y. If lim_(xrarr0) (f(x))/(x)=1, then The value of f'(3) is

Let f(x) = x-[x] , for every real number x, where [x] is integral part of x. Then int_(-1) ^1 f(x) dx is

If a function f satisfies f (f(x))=x+1 for all real values of x and if f(0) = 1/2 then f(1) is equal to