Home
Class 12
MATHS
Let I(1)=int(0)^(oo)(x^(2)sqrtx)/((1+x)^...

Let `I_(1)=int_(0)^(oo)(x^(2)sqrtx)/((1+x)^(6))dx,I_(2)=int_(0)^(oo)(xsqrtx)/((1+x)^(6))dx`, then

A

`I_(1)=2I_(2)`

B

`I_(2)=2I_(1)`

C

`I_(1)=I_(2)`

D

`I_(1)=-I_(2)`

Text Solution

Verified by Experts

The correct Answer is:
D

`I_(1)=int_(0)^(oo)(x^(2)sqrtx)/((1+x)^(6))dx`
Let `x=(1)/(t)`
`rArr" "I_(1)=int_(oo)^(0)((1)/(t^(2)sqrtt))/((1+(1)/(t))^(6))(-(1)/(t^(2))dt)`
`rArr" "I_(1)=int_(0)^(oo)(tsqrtt)/((1+t)^(6))dt=I_(2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that int_(0)^(oo) (sin^(2)x)/(x^(2))dx=int_(0)^(oo) (sinx)/x dx

Evaluate int_(0)^(1)(x^(2))/(1+x^(2))dx .

Evaluate int_(0)^(1)xsqrt(1+x^(2))dx .

int_(0)^(1)e^(2x)e^(e^(x) dx =)

IfI(m , n)=int_0^1x^(m-1)(1-x)^(n-1)dx ,(m , n in I ,m ,ngeq0),t h e n I(m , n)=int_0^oo(x^(m-1))/((1+x)^(m-n))dx I(m , n)=int_0^oo(x^(m-1))/((1+x)^(m+n))dx I(m , n)=int_0^oo(x^(n-1))/((1+x)^(m+n))dx I(m , n)=int_0^oo(x^n)/((1+x)^(m+n))dx

int_(0)^(oo)e^(-x^(2))dx=(sqrtpi)/(2) then

int_(0)^(1)x(1-x)^(10)dx .

Evaluate int_(0)^(1)(x^2/(1+x^2))dx

int_(0)^(prop) x^(6) e^(-(x)/(2))dx is :

Let I_(n)=int_(0)^(1)x^(n)sqrt(1-x^(2))dx. Then lim_(nrarroo)(I_(n))/(I_(n-2))=