Home
Class 12
MATHS
Let f(x)=int(0)^(x)(e^(t))/(t)dt(xgt0), ...

Let `f(x)=int_(0)^(x)(e^(t))/(t)dt(xgt0),`
then `e^(-a)[f(x+1)-f(1+a)]=`

A

a) `int_(0)^(x)=(e^(t))/((t+a))dt`

B

b) `int_(1)^(x)(e^(t))/(t+a)dt`

C

c) `e^(-a)int_(1+a)^(x+a)(e^(t))/(t)dt`

D

d) `int_(0)^(x)(e^(t-a))/((t+a))dt`

Text Solution

Verified by Experts

The correct Answer is:
B, C

`e^(-a)[f(x+a)-f(1+a)]`
`" "=e^(-a)[int_(0)^(x+a)(e^(t).dt)/(t)-int_(0)^(1+a)(e^(t))/(t)dt]`
`" "=e^(-a)[int_(0)^(x+a)(e^(t).dt)/(t)+int_(1+a)^(0)(e^(t))/(t)dt]`
`" "=e^(-a)[int_(1+a)^(x+a)(d^t.dt)/(t)]`
`" "=e^(-a)int_(1)^(x)(e^(y+a))/(y+a).dy" "("Put, t"=y+a, dt=dy)`
`" "=int_(1)^(x)(e^(y).dy)/(t+a)`
`" "=int_(1)^(x)(e^(t).dt)/(t+a)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=int_(1)^(x)(3^(t))/(1+t^(2))dt , where xgt0 , Then

If f(x)=int_(2)^(x)(dt)/(1+t^(4)) , then

Let f(x)=int_(2)^(x)f(t^(2)-3t+4)dt . Then

Let f(x)=1/x^2 int_0^x (4t^2-2f'(t))dt then find f'(4)

If int_(0)^(x^(2)(1+x))f(t)dt=x , then the value of f(2) is.

If f(x) = int_(0)^(x) t cos t dt , then (df)/(dx)

If f(x)=int_(0)^(x)|t-1|dt , where 0lexle2 , then

If f(x)=int_(0)^(x)t sintdt , then f'(x)= . . . . . .

If f' is a differentiable function satisfying f(x)=int_(0)^(x)sqrt(1-f^(2)(t))dt+1/2 then the value of f(pi) is equal to

For x >0,l e tf(x)=int_1^x(logt)/(1+t)dtdot Find the function f(x)+f(1/x) and find the value of f(e)+f(1/e)dot