Home
Class 12
MATHS
If int(0)^(x^(2)(1+x))f(t)dt=x, then the...

If `int_(0)^(x^(2)(1+x))f(t)dt=x`, then the value of f(2) is.

A

`1//2`

B

`1//3`

C

`1//4`

D

`1//5`

Text Solution

Verified by Experts

The correct Answer is:
D

Differentiating both sides w.r.t. x, then
`f(x^(2)(1+x))xx(2x+3x^(2))=1`
At `x=1rArr f(2)=(1)/(5)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If int_(0)^(x) f ( t) dt = x + int_(x)^(1) tf (t) dt , then the value of f(1) is

If f' is a differentiable function satisfying f(x)=int_(0)^(x)sqrt(1-f^(2)(t))dt+1/2 then the value of f(pi) is equal to

If f(x)=1+1/x int_1^x f(t) dt, then the value of (e^-1) is

If f(x)=x+int_0^1 t(x+t) f(t)dt, then find the value of the definite integral int_0^1 f(x)dx.

Let f be a continuous function satisfying the equation int_(0)^(x)f(t)dt+int_(0)^(x)tf(x-t)dt=e^(-x)-1 , then find the value of e^(9)f(9) is equal to…………………..

If f(x)=inte^(x)(tan^(-1)x+(2x)/((1+x^(2))^(2)))dx,f(0)=0 then the value of f(1) is

If f(x) =(e^x)/(1+e^x), I_1=int(f(-a))^(f(a)) xg(x(1-x)dx, and I_2=int_(f(-a))^(f(a)) g(x(1-x))dx, then the value of (I_2)/(I_1) is (a) -1 (b) -2 (c) 2 (d) 1

If f'(x)=f(x)+int_(0)^(1)f(x)dx ,given f(0)=1 , then the value of f(log_(e)2) is

Let f: RvecR be a continuous odd function, which vanishes exactly at one point and f(1)=1/2dot Suppose that F(x)=int_(-1)^xf(t)dtfora l lx in [-1,2]a n dG(x)=int_(-1)^x t|f(f(t))|dtfora l lx in [-1,2]dotIf(lim)_(xvec1)(F(x))/(G(x))=1/(14), Then the value of f(1/2) is