Home
Class 12
MATHS
If f(x)=int(0)^(x)log(0.5)((2t-8)/(t-2))...

If `f(x)=int_(0)^(x)log_(0.5)((2t-8)/(t-2))dt`, then the interval in which f(x) is increasing is

A

`(-oo,2)uu(6,oo)`

B

`(4,6)`

C

`(-oo,2)uu(4,oo)`

D

(2,6)

Text Solution

Verified by Experts

The correct Answer is:
B

`f'(x)gt0rArrlog_(0.5)((2x-8)/(x-2))gt0`
`rArr" "(2x-8)/(x-2)lt1`
`rArr" "(2x-8)/(x-2)-1lt0`
`rArr" "x in (2,6)`
Also `(2x-8)/(x-2) gt0 rArr" "x lt 0 or x gt 4`
`rArr" "x in (4,6)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=int_(x^(2))^(x^(2)+1)e^(-t^(2))dt , then find the interval in which f(x) increases.

Let f(x)=int_(1)^(x)(3^(t))/(1+t^(2))dt , where xgt0 , Then

y=f(x) satisfies the relation int_(2)^(x)f(t)dt=(x^(2))/2+int_(x)^(2)t^(2)f(t)dt The value of x for which f(x) is increasing is

If f(x)=int_(2)^(x)(dt)/(1+t^(4)) , then

If f' is a differentiable function satisfying f(x)=int_(0)^(x)sqrt(1-f^(2)(t))dt+1/2 then the value of f(pi) is equal to

If int_(0)^(x^(2)(1+x))f(t)dt=x , then the value of f(2) is.

If f(x)=int_(0)^(x)t sintdt , then f'(x)= . . . . . .

If int_(0)^(x) f ( t) dt = x + int_(x)^(1) tf (t) dt , then the value of f(1) is

Let f(x)=int_(2)^(x)f(t^(2)-3t+4)dt . Then

If f(x)=x+int_0^1 t(x+t) f(t)dt, then find the value of the definite integral int_0^1 f(x)dx.