Home
Class 12
MATHS
If a, b and c are real numbers, then the...

If a, b and c are real numbers, then the value of `lim_(trarr0) ln((1)/(t)int_(0)^(t)(1+asinbx)^(c//x)dx)` equals

A

abc

B

`(ab)/(c)`

C

`(bc)/(a)`

D

`(ca)/(b)`

Text Solution

Verified by Experts

The correct Answer is:
A

`L=underset(trarr0)(lim)log_(e)((1)/(t)int_(0)^(t)(1+a sinbx)^(c//x)dx)((0)/(0)"form")`
`=loe_(e)(underset(trarr0)(lim)(int_(0)^(t)(1+a sin bx)^(c//x)dx)/(t))" (Using L' Hopital Rule)"`
`=loe_(e)(underset(trarr0)(lim)((1+a sin bt)^(c//x)/(1))`
`=log_(e)[(underset(trarr0)(lim)(1+asin bt)^((1)/(a sin bt)))^((ac sin bt)/(1))]`
`=log_(e)e^(abc)`
`=abc`
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(trarr0) int_(0)^(2pi)(|sin(x+t)-sinx|)/(|t|)dx equals

The value of lim_(xto 0)(log(1+2x))/(x) is equal to

The value of lim_(xto0) (1+sinx-cosx+log(1-x))/(x^(3)) is

The value of difinite integral int_(0)^(1) (dx)/(sqrt((x+1)^(3)(3x+1))) equals

Find lim_(xrarr0)[log(1+x) -x]/x

The value of (int_(0)^(1)(dt)/(sqrt(1-t^(4))))/(int_(0)^(1)(1)/(sqrt(1+t^(4)))dt) is

The value of int_(0)^(1)(8log(1+x))/(1+x^(2))dx is

Show that int_(0)^(1)log((1-x)/(x))dx=0

Let nge1, n in Z . The real number a in 0,1 that minimizes the integral int_(0)^(1)|x^(n)-a^(n)|dx is

If f(x)=x(-1)^[1/x] xle0 , then the value of lim_(xto0)f(x) is equal to