Home
Class 12
MATHS
If f(x)=int(2)^(x)(dt)/(1+t^(4)), then...

If `f(x)=int_(2)^(x)(dt)/(1+t^(4))`, then

A

`f(3)lt(1)/(17)`

B

`f(3)gt(1)/(17)`

C

`f(3)=(1)/(17)`

D

`f(3)gt1`

Text Solution

Verified by Experts

The correct Answer is:
A

`f(x)=int_(2)^(x)(dt)/(1+t^(4)).`
`rArr" "f'(x)=(1)/(1+x^(4))`
In [2,3], apply mean value theorem to f(x)
`therefore" "(f(3)-f(2))/(3-2)=f'(x),` where `c in (2,3)`
`therefore" "f(3)-0=(1)/(1+c^(4))`
Now 2 lt c lt 3
`17 lt 1+c^(4)lt84`
`rArr" "(1)/(17)gt(1)/(1+c^(4))gt(1)/(82)`
`rArr" "(1)/(82)ltf(3)lt(1)/(17)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=int_(1)^(x)(3^(t))/(1+t^(2))dt , where xgt0 , Then

Let f(x)=int_(0)^(x)(e^(t))/(t)dt(xgt0), then e^(-a)[f(x+1)-f(1+a)]=

If f(x)=int_(0)^(1)(dt)/(1+|x-t|),x epsilonR Which of the following is not true about f(x) ?

If f(x)=int_(x^2)^(x^2+1)e^-t^2dt , then f(x) increases in (0,2) (b) no value of x (0,oo) (d) (-oo,0)

Let f(x)=int_(2)^(x)f(t^(2)-3t+4)dt . Then

If f(x)=int_(x^(2))^(x^(2)+1)e^(-t^(2))dt , then find the interval in which f(x) increases.

Consider the unction f(x)=int_(0)^(x)(5ln(1+t^(2))-10t tan^(-1)t+16sint)dt Which is not true for int_(0)^(x)f(t)dt gt?

Consider the unction f(x)=int_(0)^(x)(5ln(1+t^(2))-10t tan^(-1)t+16sint)dt f(x) is

If f(x) = int_(0)^(x) t cos t dt , then (df)/(dx)

If g(x)=int_(0)^(x)cos^(4) t dt , then (x+pi) equals