Home
Class 12
MATHS
If int(0)^(x)f(x)sint dt=" constant, " 0...

If `int_(0)^(x)f(x)sint dt=" constant, " 0 lt x lt 2pi and f(pi)=2`, then the value of `f(pi//2)` is

A

3

B

2

C

4

D

8

Text Solution

Verified by Experts

The correct Answer is:
C

`int_(0)^(x)f(x) sin t dt = "constant"`
Differentiate both side w.r.t. x
`f'(x)(1-cosx)+f(x) sin x = 0`
`rArr" "int(f'(x))/(f(x))dx=int(sinx)/(cosx-1)dx`
`rArr" "ln|f(x)|=-2 ln sin.(x)/(2)+lnc`
`rArr" "f(x)=(c)/((sin.(x)/(2))^(2))`
`f(pi)=2rArrc=2`
`rArr" "f((pi)/(2))=4`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f be a function defined on the interval [0,2pi] such that int_(0)^(x)(f^(')(t)-sin2t)dt=int_(x)^(0)f(t)tantdt and f(0)=1 . Then the maximum value of f(x) is…………………..

If int_a^b(f(x)-3x)dx=a^2-b^2 then the value of f(pi/6) is ___

If int_(0)^(x^(2)(1+x))f(t)dt=x , then the value of f(2) is.

If 0 lt x lt 2 pi and |cos x| le sin x , then

If int_(sinx)^(1)t^(2)f(t)dt=1-sinx, xepsilon(0,(pi)/2) then find the value of f(1/(sqrt(3)))

If int_(0)^(x) f ( t) dt = x + int_(x)^(1) tf (t) dt , then the value of f(1) is

If f(x)=int_(0)^(pi)(t sin t dt)/(sqrt(1+tan^(2)xsin^(2)t)) for 0lt xlt (pi)/2 then

Let f be a differentiable function satisfying int_(0)^(f(x))f^(-1)(t)dt-int_(0)^(x)(cost-f(t)dt=0 and f((pi)/2)=2/(pi) The value of int_(0)^(pi//2) f(x)dx lies in the interval