Home
Class 12
MATHS
lim(xrarr0) (int(0)^(x)(t^(2))/(sqrt(a+t...

`lim_(xrarr0) (int_(0)^(x)(t^(2))/(sqrt(a+t))dt)/(x-sinx)=1(agt0)`. Then the value of a is

A

`1//2`

B

`1//4`

C

2

D

4

Text Solution

Verified by Experts

The correct Answer is:
D

`underset(xrarr0)(lim)(int_(0)^(x)((t^(2))/(sqrt(a+t))dt))/(x -sin x)`
`" "=underset(xrarr0)(lim)((d)/(dx)(int_(0)^(x)(t^(2))/(sqrt(a+t))dt))/(1-cosx)" (by L' Hopital's Rule)"`
`" "=underset(xrarr0)(lim)(1)/(sqrt(a+x)).(((x)/(2))/(sin.(x)/(2)))^(2).4`
`" "=(1)/(2sqrta).1.4=1 rArr a=4.`
Promotional Banner

Similar Questions

Explore conceptually related problems

If int_(0)^(x) f ( t) dt = x + int_(x)^(1) tf (t) dt , then the value of f(1) is

lim_(xrarr0)(1+sinx)^(3cosecx) is :

lim_(trarr0) int_(0)^(2pi)(|sin(x+t)-sinx|)/(|t|)dx equals

Evaluate int_(-oo)^(0)(te^(t))/(sqrt(1-e^(2t)))dt

Let f(x)=int_(1)^(x)(3^(t))/(1+t^(2))dt , where xgt0 , Then

Find Lim_(x rarr0) (sqrt(t^2+9)-3)/(t^2)

Find lim_(xrarr0)(xe^x -sin2x)/(2x)

lim_(xrarr0)(4^x -1)/[sqrt(x+1) -1 ] is :

If f(x)=lim_(nrarroo) (cos(x)/(sqrtn))^(n) , then the value of lim_(xrarr0) (f(x)-1)/(x) is