Home
Class 12
MATHS
Let f(x) be a differentiable non-decreas...

Let f(x) be a differentiable non-decreasing function such that `int_(0)^(x)(f(t))^(3)dt=(1)/(x^(2))(int_(0)^(x)f(x)dt)^(3)AAx inR-{0} andf(1)="1. If "int_(0)^(x)f(t)dt=g(x)" then "(xg'(x))/(g(x))` is

A

always equal to 1

B

always equal to `-2`

C

may be 1 or `-2`

D

not independent of x

Text Solution

Verified by Experts

The correct Answer is:
A

`int_(0)^(x)(f(t))^(3)dt=(1)/(x^(2))(int_(0)^(x)f(t)dt)^(3)`
`therefore" "int_(0)^(x)(f(t))^(3)dt=(1)/(x^(3))(g(x))^(3)`
Differentiating w.r.t. x,
`therefore" "(f(x))^(3)=(1)/(x^(2))3(g(x))^(2)g'(x)-(2)/(x^(3))(g(x))^(3)`
`rArr" "((xg'(x))/(g(x)))^(3)-3((x.g'(x))/(g(x)))+2=0`
`rArr" "(xg'(x))/(g(x))=1or -2`
If `(xg'(x))/(g(x))=1`
`rArr" "xf(x)=int_(0)^(x)f(t)dt`
`rArr" "xf'(x)+f(x)=f(x)`
`rArr" "f(x)=1`
`"or "xf'(x)+f(x)=-2f(x)`
`" "(f'(x))/(f(x))=(-3)/(x)`
`logf(x)=-3log x+logc`
`rArr" "f(x)=c//x^(3)`
`rArr" "f(1)=1 rArr f(x)=1//x^(3)" (decreasing function)"`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f:RtoR be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt . y=f(x) is

If int_(0)^(x)f(t)dt=e^(x)-ae^(2x)int_(0)^(1)f(t)e^(-t)dt , then

Let f(x) be a differentiable function such that f(x)=x^2 +int_0^x e^-t f(x-t) dt then int_0^1 f(x) dx=

Let f:RtoR be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt . f(x) increases for

If int_(0)^(x) f(t)dt=x^2+int_(x)^(1) t^2f(t)dt , then f'(1/2) is

If f(x)=int_(2)^(x)(dt)/(1+t^(4)) , then

Let f be a differentiable function satisfying int_(0)^(f(x))f^(-1)(t)dt-int_(0)^(x)(cost-f(t)dt=0 and f((pi)/2)=2/(pi) The value of int_(0)^(pi//2) f(x)dx lies in the interval

If f(x) = int_(0)^(x) t cos t dt , then (df)/(dx)

Let f(x)=int_(2)^(x)f(t^(2)-3t+4)dt . Then

Prove that int_0^x e^(x t)e^-t^2dt=e^(x^(2)/4)int_0^x e^-(t^(2)/4)dt