Home
Class 12
MATHS
Let f be continuous and the function g i...

Let f be continuous and the function g is defined as `g(x)=int_0^x(t^2int_0^tf(u)du)dt` where `f(1) = 3`. then the value of `g' (1) +g''(1)` is

A

1

B

2

C

3

D

4

Text Solution

Verified by Experts

The correct Answer is:
C

`g(x)=int_(0)^(x)(t^(2).int_(1)^(t)f(u)du)dt`
`rArr" "g'(x)=x^(2)int_(1)^(x)f(u)du" hence "g'(1)=0`
`rArr" "g''(x)=x^(2)+(int_(1)^(x)f(u)du).2x`
`rArr" "g''(1)=f(1)+0=3`
`therefore" "g'(1)+g''(1)=3`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f be a continuous function satisfying the equation int_(0)^(x)f(t)dt+int_(0)^(x)tf(x-t)dt=e^(-x)-1 , then find the value of e^(9)f(9) is equal to…………………..

Let f: RvecR be a continuous function which satisfies f(x)= int_0^xf(t)dtdot Then the value of f(1n5) is______

If f is continuous function and F(x)=int_0^x((2t+3)dotint_t^2f(u)d u)dt , then |(F^(2))/(f(2))| is equal to_____

Let f(x)=int_2^x (dt)/sqrt(1+t^4) and g be the inverse of f . Then, the value of g'(x) is

A continuous function f(x) satisfies the relation f(x)=e^x+int_0^1 e^xf(t)dt then f(1)=

If int_(0)^(x) f ( t) dt = x + int_(x)^(1) tf (t) dt , then the value of f(1) is

Let f(x)=1/x^2 int_0^x (4t^2-2f'(t))dt then find f'(4)

Let f(x)=int_(1)^(x)(3^(t))/(1+t^(2))dt , where xgt0 , Then

Let f(x) be a differentiable function such that f(x)=x^2 +int_0^x e^-t f(x-t) dt then int_0^1 f(x) dx=