Home
Class 12
MATHS
Let f(x)=int(2)^(x)f(t^(2)-3t+4)dt. Then...

Let `f(x)=int_(2)^(x)f(t^(2)-3t+4)dt`. Then

A

f(2) = 0

B

`f(-2)=0`

C

`f'(2)=0`

D

`f'(2)=2`

Text Solution

Verified by Experts

The correct Answer is:
A, C

`f(2)=0`
Also, `f'(x)=f(x^(2)-3x+4)`
`f'(2)=f(2)=0`
Promotional Banner

Similar Questions

Explore conceptually related problems

For x epsilon(0,(5pi)/2) , definite f(x)=int_(0)^(x)sqrt(t) sin t dt . Then f has

If f(x)=int_(2)^(x)(dt)/(1+t^(4)) , then

Let f(x)=int_(1)^(x)(3^(t))/(1+t^(2))dt , where xgt0 , Then

Let f(x)=int_(0)^(x)(e^(t))/(t)dt(xgt0), then e^(-a)[f(x+1)-f(1+a)]=

Let f(x)=1/x^2 int_0^x (4t^2-2f'(t))dt then find f'(4)

Consider the unction f(x)=int_(0)^(x)(5ln(1+t^(2))-10t tan^(-1)t+16sint)dt f(x) is

Consider the unction f(x)=int_(0)^(x)(5ln(1+t^(2))-10t tan^(-1)t+16sint)dt Which is not true for int_(0)^(x)f(t)dt gt?

If f' is a differentiable function satisfying f(x)=int_(0)^(x)sqrt(1-f^(2)(t))dt+1/2 then the value of f(pi) is equal to

y=f(x) satisfies the relation int_(2)^(x)f(t)dt=(x^(2))/2+int_(x)^(2)t^(2)f(t)dt The range of y=f(x) is

y=f(x) satisfies the relation int_(2)^(x)f(t)dt=(x^(2))/2+int_(x)^(2)t^(2)f(t)dt The range of y=f(x) is