Home
Class 12
MATHS
Consider the unction f(x)=int(0)^(x)(5...

Consider the unction
`f(x)=int_(0)^(x)(5ln(1+t^(2))-10t tan^(-1)t+16sint)dt`
f(x) is

A

negative for all `x in (0,1)`

B

increasing for all `x in (0,1)`

C

decreasing for all `x in (0,1)`

D

non-monotonic function for `x in (0,1)`

Text Solution

Verified by Experts

The correct Answer is:
B

`f(x)=int_(0)^(x)(5ln(1+t^(2))-10t tan^(-1)t+16sint)dt.`
`rArr" "f'(x)=5ln(1+x^(2))-10x tan^(-1)x+16 sinx`
`rArr" "f''(x)=2(8 cos x-5 tan^(-1)x)`
`rArr" "f''(x)=-2(8sinx+(5)/(1+x^(2)))lt0AAx in (0,1)`
So, f''(x) is decreasing `AA x in (0,1)`
`rArr" "f''(x)gtf''(1)=2(8cos1-(5pi)/(4))`
`" "gt2(8cos.(pi)/(3)-(5pi)/(4))`
`" "=2(4-(5pi)/(4))gt0`
So, f''(x) is increasing, for `x gt 0 , f'(x)gtf'(0)=0`
So, f(x) is increasing, for `x gt0, f(x) gt f(0)=0`
So, `int_(0)^(x)f(t)` is positive and increasing.
Promotional Banner

Similar Questions

Explore conceptually related problems

Consider the unction f(x)=int_(0)^(x)(5ln(1+t^(2))-10t tan^(-1)t+16sint)dt Which is not true for int_(0)^(x)f(t)dt gt?

If f(x)=int_(2)^(x)(dt)/(1+t^(4)) , then

Let f(x)=int_(2)^(x)f(t^(2)-3t+4)dt . Then

Let f:RtoR be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt . y=f(x) is

Let f:RtoR be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt . f(x) increases for

Find the points of minima for f(x)=int_0^x t(t-1)(t-2)dt

If f' is a differentiable function satisfying f(x)=int_(0)^(x)sqrt(1-f^(2)(t))dt+1/2 then the value of f(pi) is equal to

Find the domain of f(x)=(log)_(10)(log)_2(log)_(2/pi)(t a n^(-1)x)^(-1)

If int_(0)^(x) f(t)dt=x^2+int_(x)^(1) t^2f(t)dt , then f'(1/2) is

A function f(x) satisfies f(x)=sinx+int_0^xf^(prime)(t)(2sint-sin^2t)dt is