Home
Class 12
MATHS
Let I(n)=int(0)^(1)x^(n)sqrt(1-x^(2))dx....

Let `I_(n)=int_(0)^(1)x^(n)sqrt(1-x^(2))dx.` Then `lim_(nrarroo)(I_(n))/(I_(n-2))=`

A

2

B

1

C

`-1`

D

`-2`

Text Solution

Verified by Experts

The correct Answer is:
B

`I_(n)=int_(0)^(1)x^(n)sqrt(1-x^(2))dx=int_(0)^(1)x^(n-1)xsqrt(1-x^(2))dx`
`=-x^(n-1)|((1-x^(2))^(3//2))/(3)|_(0)^(1)+int_(0)^(1)(n-1)x^(n-1)((1-x^(2))^(3//2))/(3)dx`
`=0+(n-1)/(3)int_(0)^(1)x^(n-2)(1-x^(2))sqrt(1-x^(2))dx`
`=(n-1)/(3)I_(n-2)-(n-1)/(3)I_(n)`
`rArr" "3I_(n)+(n-1)I_(n)=(n-1)I_(n-2)`
`rArr" "(I_(n))/(I_(n)-2)=(n-1)/(n+2)`
`rArr" "underset(n rarroo)(lim)(I_(n))/(I_(n-2))=1.`
Promotional Banner

Similar Questions

Explore conceptually related problems

If a_(n) and b_(n) are positive integers and a_(n)+sqrt2b_(n)=(2+sqrt2))^(n) , then lim_(nrarroo) ((a_(n))/(b_(n))) =

Let I_(1)=int_(0)^(oo)(x^(2)sqrtx)/((1+x)^(6))dx,I_(2)=int_(0)^(oo)(xsqrtx)/((1+x)^(6))dx , then

Let I_(n)=int_(0)^(pi//2)(sinx+cosx)^(n)dx(nge2) . Then the value of n. I_(n)-2(n-1)I_(n-1) is

Let f(x)=lim_(ntooo) (x)/(x^(2n)+1). Then

Evaluate: int([sqrt(1+x^2)+x]^n)/(sqrt(1+x^2))dx

If I_(n)=int_(0)^(pi/2) sin^(x)x dx , then show that I_(n)=((n-1)n)I_(n-2) . Hence prove that I_(n)={(((n-1)/n)((n-3)/(n-2))((n-5)/(n-4))………(1/2)(pi)/2,"if",n"is even"),(((n-1)/n)((n-3)/(n-2))((n-5)/(n-4))………(2/3)1,"if",n"is odd"):}

IfI(m , n)=int_0^1x^(m-1)(1-x)^(n-1)dx ,(m , n in I ,m ,ngeq0),t h e n I(m , n)=int_0^oo(x^(m-1))/((1+x)^(m-n))dx I(m , n)=int_0^oo(x^(m-1))/((1+x)^(m+n))dx I(m , n)=int_0^oo(x^(n-1))/((1+x)^(m+n))dx I(m , n)=int_0^oo(x^n)/((1+x)^(m+n))dx

IfI_n=int_0^1x^n(tan^(-1)x)dx ,t h e np rov et h a t (n+1)I_n+(n-1)I_(n-2)=-1/n+pi/2

Let m,n be two positive real numbers and define f(n)=int_(0)^(oo)x^(n-1)e^(-x)dx and g(m,n)=int_(0)^(1)x^(m-1)(1-m)^(n-1)dx . It is known that f(n) for n gt 0 is finite and g(m, n) = g(n, m) for m, n gt 0. int_(0)^(oo)(x^(m-1))/((1+x)^(m+n))dx=

Let: a_n=int_0^(pi/2)(1-sint)^nsin2tdt Then find the value of lim_(n->oo)na_n