Home
Class 12
MATHS
Let f be a continuous function satisfyin...

Let f be a continuous function satisfying `f '(I n x)=[1` for `0< x<= 1, x` for `x > 1` and `f (0) = 0` then `f(x)` can be defined as

A

`f(x)={{:(1,if,xle1),(1-e^(x),if,xgt1):}`

B

`f(x)={{:(1,if,xle1),(e^(x)-1,if,xgt1):}`

C

`f(x)={{:(1,if,xlt1),(e^(x),if,xgt1):}`

D

`f(x)={{:(1,if,xle1),(e^(x)-1,if,xgt1):}`

Text Solution

Verified by Experts

The correct Answer is:
D

`f'(lnx)={{:(1,"for", 0ltxle1),(x,"for",xgt1):}`
Put log x = t
`rArr" "x=e^(t)`
For `x gt 1,f'(t)=e^(t),t gt0`
integrating `f(t)=e^(t)+C,`
`f(0)=e^(0)+c`
`rArr" "c=-1" (given f(0) = 0)"`
`therefore" "f(t)=e^(t)-1" for "tgt0" (corresponding to x gt 1)"`
Hence `f(x)=e^(x)-1" for "x gt 0" (1)"`
again for `0lt x le 1`
`f'(logx) = 1" "(x=e^(t))`
`f'(t)=1" for "t le0`
`f(t)=t+C`
`f(0)=0+C`
`rArr" C=0`
`rArr" "f(t)=t " for "t lt0`
`rArr" "f(x)=x" for "x le0`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f: R->R be a continuous onto function satisfying f(x)+f(-x)=0AAx in Rdot If f(-3)=2a n df(5)=4in[-5,5], then the minimum number of roots of the equation f(x)=0 is

If a function f satisfies f (f(x))=x+1 for all real values of x and if f(0) = 1/2 then f(1) is equal to

Let f(x) be continuous functions f: RvecR satisfying f(0)=1a n df(2x)-f(x)=xdot Then the value of f(3) is 2 b. 3 c. 4 d. 5

Let f(x) be defined for all x > 0 and be continuous. Let f(x) satisfy f((4x)/y)=f(x)-f(y) for all x,y and f(4e) = 1, then (a) f(x) = In 4x(b) f(x) is bounded (c) lim_(x->0) f(1/x)=0 (d) lim_(x->0)xf(x)=0

f:R^+ ->R is a continuous function satisfying f(x/y)=f(x)-f(y) AAx,y in R^+ .If f'(1)=1,then (a)f is unbounded (b) lim_(x->0)f(1/x)=0 (c) lim_(x->0)f(1+x)/x=1 (d) lim_(x->0)x.f(x)=0

A continuous function f(x) satisfies the relation f(x)=e^x+int_0^1 e^xf(t)dt then f(1)=

If f(x) is a differentiable real valued function satisfying f''(x)-3f'(x) gt 3 AA x ge 0 and f'(0)=-1, then f(x)+x AA x gt 0 is

Let a function f be defined by f (x) =[x-|x|]/x for xne 0 and f(0)=2 .Then f is :

Let f: R->R be a continuous function and f(x)=f(2x) is true AAx in Rdot If f(1)=3, then the value of int_(-1)^1f(f(x))dx is equal to (a)6 (b) 0 (c) 3f(3) (d) 2f(0)

Let f: RvecR be a continuous function which satisfies f(x)= int_0^xf(t)dtdot Then the value of f(1n5) is______