Home
Class 12
MATHS
If g(x) is the inverse of f(x) and f(x...

If `g(x)` is the inverse of `f(x) and f(x)` has domain `x in [1,5]`, where `f(1)=2 and f(5) = 10` then the values of `int_1^5 f(x)dx+int_2^10 g(y) dy` equals

A

72

B

56

C

36

D

48

Text Solution

Verified by Experts

The correct Answer is:
D

`y=f(x)`
`rArr" "x=f^(-1)(y)=g(y)`
`" "dy=f'(x)dx`
where y is 2 then x = 1 and y is 10 then x = 5
`therefore" "I=int_(1)^(5)f(x)dx+int_(2)^(10)g(y)dy`
`" "=int_(1)^(5)f(x)dx+int_(1)^(5)xf'(x)dx`
`therefore" "I=int_(1)^(5)(f(x)+xf'(x))dx`
`" "=xf(x)|_(1)^(5)=5f(5)-f(1)=5.10-2=28`
Promotional Banner

Similar Questions

Explore conceptually related problems

f:[0,5]rarrR,y=f(x) such that f''(x)=f''(5-x)AAx in [0,5] f'(0)=1 and f'(5)=7 , then the value of int_(1)^(4)f'(x)dx is

Let y=f(x)=4x^(3)+2x-6 , then the value of int_(0)^(2)f(x)dx+int_(0)^(30)f^(-1)(y)dy is equal to _________.

If f(0)=1,f(2)=3,f^'(2)=5 ,then find the value of int_0^1xf^('')(2x)dx

For y gt 0 and x in R, ydx + y^(2)dy = xdy where y = f(x). If f(1)=1, then the value of f(-3) is

A continuous real function f satisfies f(2x)=3(f(x)AAx in RdotIfint_0^1f(x)dx=1, then find the value of int_1^2f(x)dx

A continuous real function f satisfies f(2x)=3(f(x)AAx in RdotIfint_0^1f(x)dx=1, then find the value of int_1^2f(x)dx

If int f (x) dx = g (x) +c, then int f(x)g' (x)dx

If int f(x)dx=psi(x) , then int x^5f(x^3)dx