Home
Class 12
MATHS
If fx=x+sinx, then int(pi)^(2pi)f^(-1)(x...

If `fx=x+sinx`, then `int_(pi)^(2pi)f^(-1)(x)dx` is equal to

A

`(3pi^(2))/(2)-2`

B

`(3pi^(2))/(2)+2`

C

`3pi^(2)`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B

Putting `x=f(t) rArr dx=f'(t)dt`
`I=int_(pi)^(2pi)t.f'(t)dt" "(becausef(pi)=pi andf(2pi)=2pi)`
`=|t.f(t)|_(pi)^(2pi)-int_(pi)^(2pi)1.f(t)dt`
`=2pif(2pi)-pif(pi)-|(t^(2))/(2)-cost|_(pi)^(2pi)`
`=4pi^(2)-pi^(2)-(1)/(2)(4pi^(2)-pi^(2))+(cos 2pi- cospi)=(3pi^(2))/(2)+2`
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(pi/2)e^(-x) sinx dx is

If f(x)=x+sinx , then find the value of int_pi^(2pi)f^(-1)(x)dxdot

Evaluate: int_(-pi/2)^(2pi)sin^(-1)(sinx)dx

If f(x)=sqrt(1-sin2x) , then f^(prime)(x) is equal to (a) -(cosx+sinx),forx in (pi/4,pi/2) (b) cosx+sinx ,forx in (0,pi/4) (c) -(cosx+sinx),forx in (0,pi/4) (d) cosx-sinx ,forx in (pi/4,pi/2)

int_(0)^(pi)(cosx)/(1+sinx)dx=

Statement I: The value of the integral int_(pi//6)^(pi//3) (dx)/(1+sqrt(tanx)) is equal to (pi)/6 . Statement II: int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx

The value of int_(-pi//2)^(pi//2)(x^(2)cosx)/(1+e^(x)) d x is equal to

Evaluate int_(0)^(pi)(x)/(1+sinx) dx.

If f(x)=0 is a quadratic equation such that f(-pi)=f(pi)=0 and f(pi/2)=-(3pi^2)/4, then lim_(x->-pi)(f(x))/("sin"(sinx) is equal to (a) 0 (b) pi (c) 2pi (d) none of these

If int_0^x(f(t))dt=x+int_x^1(t^2.f(t))dt+pi/4-1 , then the value of the integral int_-1^1(f(x))dx is equal to