Home
Class 12
MATHS
Given a real-valued function f which is ...

Given a real-valued function f which is monotonic and differentiable. Then `int_(f(a))^(f(b))2x(b-f^(-1)(x))dx=`

A

`int_(a)^(b)(f^(2)(x)-2f^(2)(a))dx`

B

`int_(a)^(b)(2f^(2)(x)-f^(2)(a))dx`

C

`int_(a)^(b)(f^(2)(x)-f^(2)(a))dx`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
C

Let `f^(-1)(x)=u`
`therefore" "int_(f(a))^(f(b))2x(b-f^(-1)(x))dx`
`" "=int_(1)^(b)2f(u)(b-u)f'(u)du`
`" "=|(b-u)f^(2)(u)|_(a)^(b)+int_(a)^(b)f^(2)(u)du`
`" "=int_(a)^(b)(f^(2)(x)-f^(2)(a))dx`
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(a)^(b) f(x) dx =

For every function f (x) which is twice differentiable , these will be good approximation of int_(a)^(b)f(x)dx=((b-a)/(2)){f(a)+f(b)} , for more acutare results for cin(a,b),F( c) = (c-a)/(2)[f(a)-f( c)]+(b-c)/(2)[f(b)-f( c)] When c= (a+b)/(2) int_(a)^(b)f(x)dx=(b-a)/(4){f(a)+f (b)+2 f ( c) }dx If lim_(t toa) (int_(a)^(t)f(x)dx-((t-a))/(2){f(t)+f(a)})/((t-a)^(3))=0 , then degree of polynomial function f (x) atmost is

Evaluate int_(0)^(a)(f(x))/(f(x)+f(a-x)) dx.

Let g(x) be the inverse of an invertible function f(x), which is differentiable for all real xdot Then g^('')(f(x)) equals. (a) -(f^('')(x))/((f^'(x))^3) (b) (f^(prime)(x)f^('')(x)-(f^(prime)(x))^3)/(f^(prime)(x)) (c) (f^(prime)(x)f^('')(x)-(f^(prime)(x))^2)/((f^(prime)(x))^2) (d) none of these

If f(x) is monotonic differentiable function on [a , b] , then int_a^bf(x)dx+int_(f(a))^(f(b))f^(-1)(x)dx= (a) bf(a)-af(b) (b) bf(b)-af(a) (c) f(a)+f(b) (d) cannot be found

If f(x) is even then int_(-a)^(a)f(x)dx ….

f is a real valued function from R to R such that f(x)+f(-x)=2 , then int_(1-x)^(1+X)f^(-1)(t)dt=

Let f be a real-valued function such that f(x)+2f((2002)/x)=3xdot Then find f(x)dot

Prove that int_(a)^(b)f(x)dx=(b-a)int_(0)^(1)f((b-a)x+a)dx

Ifint(x^4+1)/(x^6+1)dx=tan^(-1)f(x)-2/3tan^(-1)g(x)+C ,t h e n both f(x)a n dg(x) are odd functions f(x) is monotonic function f(x)=g(x) has no real roots int(f(x))/(g(x))dx=-1/x+3/(x^3)+c