Home
Class 12
MATHS
Let I=int1^2 (dx)/sqrt(2x^3-9x^2+12x+4)...

Let `I=int_1^2 (dx)/sqrt(2x^3-9x^2+12x+4)` then

A

`(1)/(3)ltIlt(1)/(sqrt8)`

B

`(1)/(4)ltIlt(1)/(3)`

C

`(1)/(4)ltIlt0`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
A

Let `f(x)=2x^(3)-9x^(2)+12x+4.`
`rArr" "f'(x)=6x^(2)-18x+12=6(x-1)(x-2)le 0 " for " x in [1,2].`
`rArr" "f(x)" is decreasing in "[1,2]`
`therefore" "f(2) lt f(2) lt f(1)`
`therefore" "8lt f(x) lt 9`
`therefore" "(1)/(3)lt(1)/(sqrt(2x^(3)-9x^(2)+12x+4))lt(1)/(sqrt8)`
`rArr" "(1)/(3)int_(1)^(2)dxltint_(1)^(2)(dx)/(sqrt(2x^(3)-9x^(2)+12x+4))lt(1)/(sqrt8)int_(1)^(2)dx`
`rArr" "(1)/(3)ltIlt(1)/(sqrt8)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let I_(n)=int_(0)^(1)x^(n)sqrt(1-x^(2))dx. Then lim_(nrarroo)(I_(n))/(I_(n-2))=

Evaluate int (dx)/(sqrt(9 + 8x -x^2) )

int (x^2 -1 )/ (x^3 sqrt(2x^4 - 2x^2 +1))dx is equal to

The value of int_(0)^((2)/( 3)) (dx)/( sqrt(4-9x^(2))) is

Evaluate int(1)/(sqrt(2x-x^(2)))dx .

int(2sin^(-1)x)/(sqrt(1-x^(2)))dx

int_(0)^((3)/(2)) sqrt(9-4x^2)dx= .

Let u=int_0^oo (dx)/(x^4+7x^2+1 and v=int_0^oo (x^2dx)/(x^4+7x^2+1) then