Home
Class 12
MATHS
Let m,n be two positive real numbers and...

Let m,n be two positive real numbers and define `f(n)=int_(0)^(oo)x^(n-1)e^(-x)dx` and `g(m,n)=int_(0)^(1)x^(m-1)(1-m)^(n-1)dx`.
It is known that f(n) for n `gt` 0 is finite and g(m, n) = g(n, m) for m, n `gt` 0.
`int_(0)^(oo)(x^(m-1))/((1+x)^(m+n))dx=`

A

g(m,n)

B

`g(m-1,n)`

C

`g(m-1,n-1)`

D

`g(m,n-1)`

Text Solution

Verified by Experts

The correct Answer is:
A

`g(m,n)=int_(0)^(1)x^(m-1)(1-x)^(n-1)dt`
Put `x=(1)/(1+y)`
`rArr" "g(m,n)=int_(oo)^(0)(1)/((1+y)^(m-1))(1-(1)/(1+y))^(n-1)(-(1)/((1+y)^(2)))dy`
`" "=int_(0)^(oo)(y^(n-1))/((1+y)^(m+n))dy`
`" "=int_(0)^(oo)(x^(n-1))/((1+x)^(m+n))dx`
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate : int_(0)^(1)x(1-x)^(n)dx .

Evaluate int_(0)^(1)x(1-x)^(n)dx

Show that Gamma(n)=2int_(0)^(infty)e^(-x^(2))x^(2n-1) dx.

Let I_(n)=int_(0)^(1)x^(n)sqrt(1-x^(2))dx. Then lim_(nrarroo)(I_(n))/(I_(n-2))=

Prove that: I_n=int_0^oox^(2n+1)e^-x^2dx=(n !)/2,n in Ndot

Let nge1, n in Z . The real number a in 0,1 that minimizes the integral int_(0)^(1)|x^(n)-a^(n)|dx is

If n is odd then int_(0)^(pi//2)sin^(n)x dx is

Evaluate int_(0)^(prop) e^(-ax)x^(n-1)dx,a gt 0 in terms of Gamma function.

Evaluate int[f(x)g^(n)(x)-f^(n)(x)g(x)]dx