Home
Class 12
MATHS
If f(x) =sin x +log(e)|sec x + tanx|-2x ...

If `f(x) =sin x +log_(e)|sec x + tanx|-2x for x in (-(pi)/(2),(pi)/(2))` then check the monotonicity of f(x)

Text Solution

Verified by Experts

The correct Answer is:
Stictly increasing

`f(x) =cosx + (sec x tanx +sec^(2))/(sec x +tan x )-2`
`=cos x+ sec x-2`
`=(cos^(2)x-2 cos+1)/(cos x)`
`=(cosx-1)^(2)/(cosx)ge for all x in (-(pi)/(2),(pi)/(2))`
`therefroe` f(x) is increasing function
Also f'(x) =0 at x=0 only
`therefore` f(x) is strictly increasing function
Promotional Banner

Topper's Solved these Questions

  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE|Exercise Exercise 6.2|10 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE|Exercise Exercise 6.3|6 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE|Exercise Illustration|2 Videos
  • METHODS OF DIFFERETIATION

    CENGAGE|Exercise Question Bank|13 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

Minimum value of f(x)=cos^(2)x+(secx)/(4) , x in (-(pi)/(2),(pi)/(2)) is

Solve cos 2x=|sin x|, x in (-pi/2, pi) .

Solve cos 2x=|sin x|, x in (-pi/2, pi) .

Find the number of solutions to log_(e) |sin x| = -x^(2) + 2x in [-(pi)/(2), (3pi)/(2)] .

If f(x)=(log)_e((x^2+e)/(x^2+1)) , then the range of f(x)

If f(x) = |cos x| + |sin x| , then dy/dx at x = (2pi)/3 is equal to

Let E_(1)={x in R :x ne 1 and (x)/(x-1) gt 0} and E_(2)={x in E_(1):sin^(-1)(log_(e)((x)/(x-1))) " is real number"} (Here, the inverse trigonometric function sin^(-1)x assumes values in [-(pi)/(2),(pi)/(2)] .) Let f:E_(1) to R be the function defined by f(x)=log_(e)((x)/(x-1)) and g:E_(2) to R be the function defined by g(x)=sin^(-1)(log_(e)((x)/(x-1))) . The correct option is

If x in (0,pi//2) , then the function f(x)= x sin x +cosx +cos^(2)x is

If f(a)=lim_(xto2)(sin^(x)a+cos^(x)a)^((1)/((x-2)))" for "ain[0,(pi)/(2)], then