Home
Class 12
MATHS
Find the values of x where function f(X...

Find the values of x where function `f(X) = (sin x + cosx)(e^(x))` in `(0,2pi)` has point of inflection

Text Solution

Verified by Experts

The correct Answer is:
`x=pi//4,5pi//4`

We have f(x) =`(sinx+cosx)^(e^(x)`
`therefore f(x) =(sinx+cosx)e^(x)+e^(x)(cosx-sinx)`
`rarr f(x) =2e^(x)cosx`
`f''(x) =2(e^(x) cosx-=e^(x)sinx)`
`=2e^(x)(cosx-sinx)`
If f''(x) =0 then cos x - sinx =0
`therefore tanx=1 rarr x =(pi)/(4),(5pi)/(4)`
Promotional Banner

Topper's Solved these Questions

  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE|Exercise Exercise 6.4|16 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE|Exercise Exercise 6.5|5 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE|Exercise Exercise 6.2|10 Videos
  • METHODS OF DIFFERETIATION

    CENGAGE|Exercise Question Bank|13 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

Find the value of x for which f(x)=sqrt(sinx-cosx) is defined, x in [0,2pi)dot

Find the range of the function f(x) =x Sin x-(1)/(2) sin^(2) x for x in (0,(pi)/(2))

Find the domain of the following functions f(x)=sin^(-1)x+cosx

Separate the intervals of monotonocity for the function f(x)=sinx+cosx ,x in (0,2pi)

Find the values of a if equation 1-cosx=(sqrt(3))/2|x|+ a ,x in (0,pi), has exactly one solution.

find the range of function f(x)=sin(x+(pi)/(6))+cos(x-(pi)/(6))

Draw the graph of f(x) = e^(x)/(1+e^(x)) . Also find the point of inflection.

Find sum of maximum and minimum values of the function f(x) = sin^2x + 8cosx - 7

If x in (0,pi//2) , then the function f(x)= x sin x +cosx +cos^(2)x is

Find the critical (stationary ) points of the function f(X)= (x^(5))/(20)-(x^(4))/(12) +5Name these points .Also find the point of inflection