Home
Class 12
MATHS
Find the maximum and minimum values of t...

Find the maximum and minimum values of the function `y=(log)_e(3x^4-2x^3-6x^2+6x+1)AAx in (0,2)` Given that`(3x^4-2x^3-6x^2+6x^2+6x+1)>0Ax in (0,2)`

Text Solution

Verified by Experts

The correct Answer is:
Point of local maxima :x=`1//2`
Point of local minima:x=1

`f(x) = log_(e) (3x^(4)-2x^(3)-6x^(2)+6x+1),x in(0,2)`
`f(x)=(12x^(3)-6x^(2)-12x+6)/(3x^(4)-2x^(3)-6x^(2)+6x+1)`
`=6(2x^(3)=x^(2)-2x+1)/((3x^(4)-2x^(3)-6x^(2)+6x+1)`
`=6(x^(2-2)(2x-1))/(3x^(4)-2x^(3-6x^(2)+6x+1)`
Sign scheme of f(X) is as follows:
Hence x =`1//2` is point of maxima and x =1 is point of minima
Hence `f_(min) =f(1)=ln2`
and `f_(max)=f(1//2)=ln(39//16)`
Promotional Banner

Topper's Solved these Questions

  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE|Exercise Exercise 6.5|5 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE|Exercise Exercise 6.6|9 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE|Exercise Exercise 6.3|6 Videos
  • METHODS OF DIFFERETIATION

    CENGAGE|Exercise Question Bank|13 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

Find absolute maximum and minimum values of a function f given by f(x) =12x^((4)/(3))-6x^((1)/(3)),x in [-1,1]

Find the sum of squares of roots of the equation 2x^4 - 8x^3 + 6x^2 - 3=0

Solve: (log)_3(2x^2+6x-5)>1

Integrate the functions (6x+2)/(1+2x+3x^(2))

How many roots of the equation 3x^4+6x^3+x^2+6x+3=0 are real ?

The maximum value of the function f(x)=((1+x)^(0. 6))/(1+x^(0. 6)) in the interval [0,1] is 2^(0. 4) (b) 2^(-0. 4) 1 (d) 2^(0. 6)

Evaluate the definite integrals int_(1)^(2)(4x^(3)-5x^(2)+6x+9)dx

Find the centre and radius of the circle 3x^(2)+(a+1)y^(2)+6x-9y+a+4=0 .