Home
Class 12
MATHS
Let f(x)={x^3-x^2+10 x-5,xlt=1-2x+(log)2...

Let `f(x)={x^3-x^2+10 x-5,xlt=1-2x+(log)_2(b^2-2),x >1` Find the values of `b` for which `f(x)` has the greatest value at `x=1.`

Text Solution

Verified by Experts

The correct Answer is:
`b in [-sqrt(-130),-sqrt(2)]cup[sqrt(2),sqrt(130)]`

for `xlt1 , f(x) =3x^(2)-2x+10gt0`
Thus f(X) is an increasing function for `xlt1`
For `xgt1, f(X) =-2`
Thus f(x) is a decreasing funciton for `xgt1` 1.Now f(X) will have greatest value at x =1 if
`underset(xrarr(1^(+))lim f(x)lef(1)`
or `-2+log_(2)(b^(2)-2)le5`
or `0ltb^(2)le128 or 2 le b^(2)le 130`
or `bin [-sqrt(-130),-sqrt(2)]cup[sqrt(2),sqrt(130)]`
Promotional Banner

Topper's Solved these Questions

  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE|Exercise Exercise 6.5|5 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE|Exercise Exercise 6.6|9 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE|Exercise Exercise 6.3|6 Videos
  • METHODS OF DIFFERETIATION

    CENGAGE|Exercise Question Bank|13 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

Let f(x) = sqrt(log_(10)x^(2)) .Find the set of all values of x for which f (x) is real.

If f(x)=x^3-x^2+a x+b is divisible by x^2-x , then find the value of f(2)dot

If f(x)=2x-x^(2) then find the value of f(1)=____.

If f(x)=x^3+x^2-a x+b is divisible by x^2-x , then find the value of a and b

let f(x)=-x^3+(b^3-b^2+b-1)/(b^2+3b+2) if x is 0 to 1 and f(x)=2x-3 if x if 1 to 3 .All possible real values of b such that f (x) has the smallest value at x=1 ,are

The value of x for which the equation 5*3^(log_3x)-2^(1-log_2x)-3=0

Let f(x)=(log)_2(log)_3(log)_4(log)_5(s in x+a^2)dot Find the set of values of a for which the domain of f(x)i sRdot

If f(x) = sin^(-1) (sin ("log"_(2) x)) , then find the value of f(300)

Let f(x)=a/x+x^2dot If it has a maximum at x=-3, then find the value of adot

If (x^2+x−2)/(x+3) 1) f(x) then find the value of lim_(x->1) f(x)