Home
Class 12
MATHS
Let f(x)=a x^2-b|x|, where aa n db are c...

Let `f(x)=a x^2-b|x|,` where `aa n db` are constants. Then at `x=0,f(x)` has a maxima whenever `a >0,b >0` a maxima whenever `a >0,b<0` minima whenever `a >0,b<0` neither a maxima nor a minima whenever `a >0, b<0`

A

a maxima whenever `agt0,bgt0`

B

a maxima whenever `a gt 0, blt 0`

C

minima whenever `a gt 0, blt 0`

D

neither a maxima nor a minima whenver `agt 0, blt0`

Text Solution

Verified by Experts

The correct Answer is:
1,3

Promotional Banner

Topper's Solved these Questions

  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE|Exercise Exercise (Comprehension)|42 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE|Exercise Linked comprehension type|8 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE|Exercise Exercise (Single)|93 Videos
  • METHODS OF DIFFERETIATION

    CENGAGE|Exercise Question Bank|13 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=a x^2-b|x|, where aa n db are constants. Then at x=0,f(x) has a maxima whenever a >0,b >0 a maxima whenever a >0,b 0,b 0, b<0

Let f(x)=a sin x+c , where a and c are real numbers and a>0. Then f(x)lt0, AA x in R if

Let f(x)=a x^2+b x+c. Consider the following diagram. Then Fig c 0 a+b-c >0 a b c<0

Let f(x) = ax^(2) - bx + c^(2), b ne 0 and f(x) ne 0 for all x in R . Then

Let f(x)=a^2+b x+c where a ,b , c in Ra n da!=0. It is known that f(5)=-3f(2) and that 3 is a root of f(x)=0. then find the other of f(x)=0.

Let f(x)= {x^(3)+x^(2)+10x, xlt0 .Investigate x=0 for local -3sinx,xge0 maxima/minima.

If y=f(x) is a monotonic function in (a,b), then the area bounded by the ordinates at x=a, x=b, y=f(x) and y=f(c)("where "c in (a,b))" is minimum when "c=(a+b)/(2) . "Proof : " A=int_(a)^(c)(f(c)-f(x))dx+int_(c)^(b)(f(c))dx =f(c)(c-a)-int_(a)^(c)(f(x))dx+int_(a)^(b)(f(x))dx-f(c)(b-c) rArr" "A=[2c-(a+b)]f(c)+int_(c)^(b)(f(x))dx-int_(a)^(c)(f(x))dx Differentiating w.r.t. c, we get (dA)/(dc)=[2c-(a+b)]f'(c)+2f(c)+0-f(c)-(f(c)-0) For maxima and minima , (dA)/(dc)=0 rArr" "f'(c)[2c-(a+b)]=0(as f'(c)ne 0) Hence, c=(a+b)/(2) "Also for "clt(a+b)/(2),(dA)/(dc)lt0" and for "cgt(a+b)/(2),(dA)/(dc)gt0 Hence, A is minimum when c=(a+b)/(2) . If the area bounded by f(x)=(x^(3))/(3)-x^(2)+a and the straight lines x=0, x=2, and the x-axis is minimum, then the value of a is

If y=f(x) is a monotonic function in (a,b), then the area bounded by the ordinates at x=a, x=b, y=f(x) and y=f(c)("where "c in (a,b))" is minimum when "c=(a+b)/(2) . "Proof : " A=int_(a)^(c)(f(c)-f(x))dx+int_(c)^(b)(f(c))dx =f(c)(c-a)-int_(a)^(c) (f(x))dx+int_(a)^(b)(f(x))dx-f(c)(b-c) rArr" "A=[2c-(a+b)]f(c)+int_(c)^(b)(f(x))dx-int_(a)^(c)(f(x))dx Differentiating w.r.t. c, we get (dA)/(dc)=[2c-(a+b)]f'(c)+2f(c)+0-f(c)-(f(c)-0) For maxima and minima , (dA)/(dc)=0 rArr" "f'(c)[2c-(a+b)]=0(as f'(c)ne 0) Hence, c=(a+b)/(2) "Also for "clt(a+b)/(2),(dA)/(dc)lt0" and for "cgt(a+b)/(2),(dA)/(dc)gt0 Hence, A is minimum when c=(a+b)/(2) . If the area enclosed by f(x)= sin x + cos x, y=a between two consecutive points of extremum is minimum, then the value of a is

Let f(x)={(1+3x)^(1/x), x != 0e^3,x=0 Discuss the continuity of f(x) at (a) x=0, (b) x=1

If f(x)=x^3+b x^2+c x+da n df(0),f(-1) are odd integers, prove that f(x)=0 cannot have all integral roots.

CENGAGE-MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS-Exercise (Multiple)
  1. If f(x)=int0^x(sint)/t dt ,x >0, then (a)f(x) has a local maxima at x=...

    Text Solution

    |

  2. The values of parameter a for which the point of minimum of the functi...

    Text Solution

    |

  3. Let f(x)=a x^2-b|x|, where aa n db are constants. Then at x=0,f(x) has...

    Text Solution

    |

  4. The function y=(2x-1)/(x-2),(xne 2)

    Text Solution

    |

  5. Let f(x) =ax^(2) + bx + c and f(-1) lt 1, f(1) gt -1, f(3) lt -4 and a...

    Text Solution

    |

  6. If f(x)=x^3-x^2+100x+2002 ,t h e n f(1000)>f(1001) f(1/(2000))>f(1...

    Text Solution

    |

  7. If f'(x) = g(x) (x-a)^2, where g(a) != 0 and g is continuous at x = a,...

    Text Solution

    |

  8. The value of a for which the function f(x)=(4a-3)(x+log5)+2(a-7)cotx/2...

    Text Solution

    |

  9. Let f(x) = (x^2 - 1)^(n+1) + (x^2 + x + 1). Then f(x) has local extrem...

    Text Solution

    |

  10. Let f(x)=sinx+ax+b.Then which of the following is/are true?

    Text Solution

    |

  11. The function (sin(x+a))/(sin(x+b)) has no maxima or minima if b-a=npi...

    Text Solution

    |

  12. Consider f(x)=ax^(4)+cx^(2)+dx+e has no point o inflection Then which ...

    Text Solution

    |

  13. L e tf(x)={((x-1)(6x-1))/(2x-1),ifx!=1/2 0,ifx=1/7 Then at x=1/2, whi...

    Text Solution

    |

  14. If A={-3,-2,-1,0,1,2,3} and f : A->B is an onto function defined by f(...

    Text Solution

    |

  15. Let f(x) be an increasing function defined on (0,oo) . If f(2a^2+a+1)>...

    Text Solution

    |

  16. If f(x)=(sin^2x-1)^("n"),"" then x=pi/2 is a point of local maximum, i...

    Text Solution

    |

  17. For the cubic function f(x)=2x^3+9x^2+12 x+1, which one of the followi...

    Text Solution

    |

  18. Let f(x)=a5x^5+a4x^4+a3x^3+a2x^2+a1x , where ai ' s are real and f(x)=...

    Text Solution

    |

  19. If f(x)a n dg(x) are two positive and increasing functions, then which...

    Text Solution

    |

  20. An extremum of the function f(x)=(2-x)/picospi(x+3)+1/(pi^2)sinpi(x+3)...

    Text Solution

    |