Home
Class 12
MATHS
Let f(x)=x^2+(1/x^2) and g(x)=x-1/x x i...

Let `f(x)=x^2+(1/x^2)` and `g(x)=x-1/x` `x in R-{-1,0,1}`. If `h(x)=(f(x)/g(x))` then the local minimum value of `h(x)` is: (1) 3 (2) `-3` (3) `-2sqrt(2)` (4) `2sqrt(2)`

A

`2sqrt(2)`

B

3

C

-3

D

`-2sqrt(2)`

Text Solution

Verified by Experts

The correct Answer is:
1

`h(x) =(x^(2)+(1)/(x^(2))/(x-(1)/(x))=(x-(1)/(x))^(2)+2)/(x-(1)/(x))=(x-(1)/(x))+(2)/(x-(1)/(x))`
Let `x-(1)/(x)=z`
For local minimum value of `h(x) let zgt0`
`therefore h(x) =z+(2)/(z)=sqrt(z)-sqrt(2)/(z)^(2)+2sqrt(2)ge2sqrt(2)`
So local minimum value of h(x) is `2sqrt(2)`
if `zlt0` then
`h(x)=-[-a-(2)/(z)]=-[sqrt(-z)-sqrt(2)/(-z)]^(2)-2sqrt(2)le-2sqrt(2)`
So `-2sqrt(2)` is locall maximum value of h(x)
Promotional Banner

Topper's Solved these Questions

  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE|Exercise JEE Advanced Previous Year|17 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE|Exercise Exercise (Numerical)|20 Videos
  • METHODS OF DIFFERETIATION

    CENGAGE|Exercise Question Bank|13 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=sqrt(1+x^(2)) then

f(x)=((x-2)(x-1))/(x-3), forall xgt3 . The minimum value of f(x) is equal to

If f(x)=sqrt(4-x^2)+sqrt(x^2-1) , then the maximum value of (f(x))^2 is ____________

If f(x)=sqrt(4-x^2)+sqrt(x^2-1) , then the maximum value of (f(x))^2 is ____________

If (x^2+x−2)/(x+3) 1) f(x) then find the value of lim_(x->1) f(x)

Let f(x)=(alphax)/((x+1)),x!=-1. The for what value of alpha is f(f(x))=x (a) sqrt(2) (b) -sqrt(2) (c) 1 (d) -1

If f(x)=(a^x)/(a^x+sqrt(a ,)),(a >0), then find the value of g(n)= sum_(r=1)^(2n-1)2f(r/(2n)) g(4)

The function f(x)=x/2+2/x has a local minimum at x=2 (b) x=-2 x=0 (d) x=1