Home
Class 12
MATHS
The angle made by the tangent of the cur...

The angle made by the tangent of the curve `x=a(t+s in tcos t),y=a(1+s in t)^2` with the x-axis at any point on it is `1/4(pi+2t)` (b) `(1-s in t)/(cos t)` `1/4(2t-pi)` (d) `(1+s in t)/(cos2t)`

A

`1/4(pi+2t)`

B

`(1-sin t)/(cost)`

C

`1/4(2t-pi)`

D

`(1+sint)/(cos 2t)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF DERIVATIVES

    CENGAGE|Exercise Exercise (Multiple)|10 Videos
  • APPLICATION OF DERIVATIVES

    CENGAGE|Exercise Exercise (Numerical)|12 Videos
  • APPLICATION OF DERIVATIVES

    CENGAGE|Exercise Exercise 5.8|2 Videos
  • 3D COORDINATION SYSTEM

    CENGAGE|Exercise DPP 3.1|11 Videos
  • APPLICATION OF INTEGRALS

    CENGAGE|Exercise Solved Examples And Exercises|17 Videos

Similar Questions

Explore conceptually related problems

The angle made by the tangent of the curve x=a(t+si n tcos t),y=a(1+sin t)^2 with the x-axis at any point on it is (A) 1/4(pi+2t) (B) (1-sin t)/(cos t) (C) 1/4(2t-pi) (D) (1+sin t)/(cos2t)

The slope of the tangent to the curve x= t^(2)+3t-8,y=2t^(2)-2t-5 at the point (2,-1) is

Find the equation of tangent to the curve given by x = a sin^(3) t , y = b cos^(3) t at a point where t = (pi)/(2) .

Find the equation of tangent and normal to the curve given by x = 7 cos t and y = 2 sin t, t in R at any point on the curve.

Find the equations of the tangent to the given curves at the indicated points: x= cos t , y =sin t at t = (pi)/(4)

For the curve x = e^(t) cos t, y = e^(t) sin t the tangent line is parallel to x-axis when t is equal to

Find the slope of the tangent to the curves at the respective given points. x=acos^(3)t,y=bsin^(3)t " at "t=pi/2

Find the slope of the tangent to the following curves at the respective given points. x = a cos^(3) t, y = b sin^(3) t " at " t = (pi)/(2)

Find the tangent and normal to the following curves at the given points on the curve. x = cos t, y = 2 sin^(2) t " at" t= (pi)/(3)

Find the equation of tangent and normal to the curve x=(2a t^2)/((1+t^2)),y=(2a t^3)/((1+t^2)) at the point for which t=1/2dot

CENGAGE-APPLICATION OF DERIVATIVES-Exercise (Single)
  1. The number of tangents to the curve x^(3/2)+y^(3/2)=2a^(3/2),a >0, whi...

    Text Solution

    |

  2. The angle made by the tangent of the curve x=a(t+s in tcos t),y=a(1+s ...

    Text Solution

    |

  3. If m is the slope of a tangent to the curve e^y=1+x^2, then |m|>1 (b)...

    Text Solution

    |

  4. If at each point of the curve y=x^3-a x^2+x+1, the tangent is inclined...

    Text Solution

    |

  5. The slope of the tangent to the curve y=sqrt(4-x^2) at the point where...

    Text Solution

    |

  6. The curve given by x+y=e^(x y) has a tangent parallel to the y- axis a...

    Text Solution

    |

  7. If the line joining the points (0,3)a n d(5,-2) is a tangent to the cu...

    Text Solution

    |

  8. The distance between the origin and the tangent to the curve y=e^(2x)+...

    Text Solution

    |

  9. The normal to the curve 2x^2+y^2=12 at the point (2,2) cuts the curve ...

    Text Solution

    |

  10. At what point of curve y=2/3x^3+1/2x^2, the tangent makes equal angle ...

    Text Solution

    |

  11. The equation of the tangent to the curve y=b e^(-x//a) at the point wh...

    Text Solution

    |

  12. Then angle of intersection of the normal at the point (-5/(sqrt(2)),3/...

    Text Solution

    |

  13. A function y-f(x) has a second-order derivative f^(x)=6(x-1)dot It its...

    Text Solution

    |

  14. If x+4y=14 is a normal to the curve y^2=alphax^3-beta at (2,3), then t...

    Text Solution

    |

  15. The abscissas of point Pa n dQ on the curve y=e^x+e^(-x) such that tan...

    Text Solution

    |

  16. Let C be the curve y=x^3 (where x takes all real values). The tangent ...

    Text Solution

    |

  17. The x-intercept of the tangent at any arbitrary point of the curve a/(...

    Text Solution

    |

  18. Given g(x)=(x+2)/(x-1) and the line 3x+y-10=0. Then the line is (a)tan...

    Text Solution

    |

  19. The number of point in the rectangle {(x , y)}-12lt=xlt=12a n d-3lt=yl...

    Text Solution

    |

  20. Tangent of acute angle between the curves y=|x^2-1| and y=sqrt(7-x^2) ...

    Text Solution

    |