Home
Class 12
MATHS
Consider f(x)=tan^(-1)(sqrt((1+sinx)/(1-...

Consider `f(x)=tan^(-1)(sqrt((1+sinx)/(1-sinx))), x in (0,pi/2)dot` A normal to `y=f(x)` at `x=pi/6` also passes through the point: (1) (0, 0) (2) `(0,(2pi)/3)` (3) `(pi/6,0)` (4) `(pi/4,0)`

A

`(0,(2pi)/(3))`

B

`((pi)/(6)0,)`

C

`((pi)/(4),0)`

D

`(0,0)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF DERIVATIVES

    CENGAGE|Exercise Exercise (Numerical)|12 Videos
  • 3D COORDINATION SYSTEM

    CENGAGE|Exercise DPP 3.1|11 Videos
  • APPLICATION OF INTEGRALS

    CENGAGE|Exercise Solved Examples And Exercises|17 Videos

Similar Questions

Explore conceptually related problems

Solve (sqrt(5)-1)/(sinx)+(sqrt(10+2sqrt(5)))/(cosx)=8,x in (0,pi/2)

If y=sqrt((1-cos2x)/(1+cos2x),)x in (0,pi/2)uu(pi/2,pi), then find (dy)/(dx)dot

Find the value of x for which f(x)=sqrt(sinx-cosx) is defined, x in [0,2pi)dot

Prove that: cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2,x in (0,pi/4)

Discuss the extremum of f(x)=sinx(1+cosx),x in (0,pi/2)

Solve |sinx+cosx|=|sinx|+|cosx|,x in [0,2pi]dot

If int_(sinx)^(1)t^(2)f(t)dt=1-sinx, xepsilon(0,(pi)/2) then find the value of f(1/(sqrt(3)))

If f(x)={sin^(-1)(sinx),xgt0 (pi)/(2),x=0,then cos^(-1)(cosx),xlt0

The range of f(x)=sin^(-1)(sqrt(x^2+x+1))i s (0,pi/2) (b) (0,pi/3) (c) [pi/3,pi/2] (d) [pi/6,pi/3]

Show that int_(0)^((pi)/(2))(tan^(4)x)/(1+tan^(4)x)dx=(pi)/(4)