Home
Class 12
MATHS
If f(x)=(acos x-cos b x)/(x^2),x!=0a n d...

If `f(x)=(acos x-cos b x)/(x^2),x!=0a n df(0)=4` is continous at `x=0,` then the ordered pair `(a ,b)` is `(+-1,3)` b. `(1,+-3)` c. `(-1,-3)` d. `(-1,3)`

A

`+-1,3)`

B

`(1,+-3)`

C

`(-1,-3)`

D

`(1,3)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)={(1-cos(1-cos x/2))/(2^m x^n)1x=0,x!=0 and f(0)=1 is continuous at x=0 then the value of m+n is a. 2 b. 3 c. -3 d. 7

If f(x)={(sin(2x^2)/a+cos((3x)/b))^a b//x^2,x!=0e^3, x=0 is continuous at x=0AAb in R then minimum value of a is -1//8 b. -1//4 c. -1//2 d. 0

Let f(x)={(x-4)/(|x-4|)+a ,x 4 Then f(x) is continous at x=4 when a=0,b=0 b. a=1,b=1 c. a=-1,b=1 d. a=-1,b=-1

If f(x)=int(3x^2+1)/((x^2-1)^3)dxa n df(0)=0, then the value of |2/(f(2))| is___

If the function f(x)=((128 a+a x)^(1/8)-2)/((32+b x)^(1/5)-2) is continuous at x=0 , then the value of a/b is (A) 3/5f(0) (B) 2^(8/5)f(0) (C) (64)/5f(0) (D) none of these

If f(x)=x^3+b x^2+c x+da n df(0),f(-1) are odd integers, prove that f(x)=0 cannot have all integral roots.

Let f(x)={(1+3x)^(1/x), x != 0e^3,x=0 Discuss the continuity of f(x) at (a) x=0, (b) x=1

Let g(x)=2f(x/2)+f(2-x)a n df^('')(x)<0AAx in (0,2)dot Then g(x) increases in (a) (1/2,2) (b) (4/3,2) (c) (0,2) (d) (0,4/3)

If f(x)=lim_(n->oo)((x^2+a x+1)+x^(2n)(2x^2+x+b))/(1+x^(2n))and lim_(x->+-1)f(x) exist, then The value of b is (a) -1 (b). 1 ( c.) 0 (d). 2

If the straight lines 2x+3y-1=0,x+2y-1=0 ,and a x+b y-1=0 form a triangle with the origin as orthocentre, then (a , b) is given by (a) (6,4) (b) (-3,3) (c) (-8,8) (d) (0,7)