Home
Class 12
MATHS
Let A=[[1, 0, 2],[ 2, 0, 1][ 1, 1,...

Let `A=[[1, 0, 2],[ 2, 0, 1][ 1, 1, 2]]` , then det `((A-I)^3 -4 A)` is

Text Solution

Verified by Experts

The correct Answer is:
8
Promotional Banner

Similar Questions

Explore conceptually related problems

Statement 1: A=[4 0 4 2 2 2 1 2 1]B^(-1)=[1 3 3 1 4 3 1 3 4] . Then (A B)^(-1) does not exist. Statement 2: Since |A|=0,(A B)^(-1)=B^(-1)A^(-1) is meaning-less.

Let A=[(1, 2), (1, 3)], B=[(4, 0), (1, 5)], C=[(2, 0), (1, 2)] show that (A-B)^(T)=A^(T)-B^(T)

Let A=[(1, 2), (1, 3)], B=[(4, 0), (1, 5)], C=[(2, 0), (1, 2)] , show that (A-B)^(T)=A^(T)-B^(T) .

Let A=[(1, 2), (1, 3)], B=[(4, 0), (1, 5)], C=[(2, 0), (1, 2)] show that (A-B)C=AC-BC

Let A=[(1, 2), (1, 3)], B=[(4, 0), (1, 5)], C=[(2, 0), (1, 2)] show that A(BC)=(AB)C

Let the matrix A and B be defined as A=[[3 , 2], [ 2 , 1]] and B=[[3, 1],[ 7, 3]] then the absolute value of det. (2 A^9 B^-1) is

Let A=(1,2,3) , B=(3,−1,5) , C=(4,0,−3) , then angle A is

If A= [(1,2,3),(4,1,-1),(2,4,6)] ,find det (A^(T))

First row of a matrix A is [1,3,2] . If adj A=[(-2,4,alpha),(-1,2,1),(3alpha,-5,-2)] , then a det (A) is

Let a be a 3xx3 matric such that [(1,2,3),(0,2,3),(0,1,1)]=[(0,0,1),(1,0,0),(0,1,0)] , then find A^(-1) .