Home
Class 12
MATHS
y=f(x) is a function which satisfies (...

`y=f(x)` is a function which satisfies
(i) `f(0)=0`
(ii) `f^prime prime(x)=f^prime(x)` and
(iii) `f^prime(0)=1` then the area bounded by the graph of `y=f(x)`, the lines `x=0, x-1=0` and `y +1=0`, is

Text Solution

Verified by Experts

The correct Answer is:
1.72
Promotional Banner

Topper's Solved these Questions

  • AREA

    CENGAGE|Exercise Comprehension Type|2 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Comprehension|11 Videos

Similar Questions

Explore conceptually related problems

If function f satisfies the relation f(x)*f^(prime)(-x)=f(-x)*f^(prime)(x) for all x ,

If function f satisfies the relation f(x)xf^(prime)(-x)=f(-x)xf^(prime)(x)fora l lx ,a n df(0)=3,a n diff(3)=3, then the value of f(-3) is ______________

A function f(x) satisfies f(x)=sinx+int_0^xf^(prime)(t)(2sint-sin^2t)dt is

If f(0)=0,f^(prime)(0)=2, then the derivative of y=f(f(f(x))) at x=0 is 2 (b) 8 (c) 16 (d) 4

Let f(x)= maximum {x^2, (1-x)^2, 2x(1 - x)} where x in [0, 1]. Determine the area of the region bounded by the curve y=f(x) and the lines y = 0,x=0, x=1.

The function f: RvecR satisfies f(x^2)dotf^(x)=f^(prime)(x)dotf^(prime)(x^2) for all real xdot Given that f(1)=1 and f^(1)=8 , then the value of f^(prime)(1)+f^(1) is 2 b. 4 c. 6 d. 8

If y=f(x) is the solution of equation ydx+dy=-e^(x)y^(2) dy, f(0)=1 and area bounded by the curve y=f(x), y=e^(x) and x=1 is A, then

A function y=f(x) satisfies (x+1)f^(prime)(x)-2(x^2+x)f(x)=(e^x^2)/((x+1)),AAx > -1. If f(0)=5, then f(x) is

Let f: R^+ ->R be a function which satisfies f(x)dotf(y)=f(x y)+2(1/x+1/y+1) for x , y > 0. Then find f(x)dot

If for a continuous function f,f(0)=f(1)=0,f^(prime)(1)=2a n dy(x)=f(e^x)e^(f(x)) , then y^(prime)(0) is equal to a. 1 b. 2 c. 0 d. none of these