Home
Class 12
MATHS
Prove that (sintheta +sin2theta)/(1+cost...

Prove that `(sintheta +sin2theta)/(1+costheta +cos2theta)=tantheta`

Text Solution

Verified by Experts

`(9x^2-64)/(x-1-(1/(1-(x/(4+x))))`
`=((3x)^2-(8)^2)/(x-1-(1/((4+x-x)/(4+x)))`
`=((3x+8)(3x-8))/(x-1-((4+x)/4)`
`=((3x+8)(3x-8))/((4x-4-4-x)/4)`
`=4(3x+8)=12x+32`
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : (sintheta-2sin^(3)theta)/(2cos^(3)theta-costheta)-tantheta

Prove that : (sintheta-costheta)/(sintheta+costheta)+(sintheta+costheta)/(sintheta-costheta)=(2)/(2sin^(2)theta-1)

For -pi/2 lt theta lt pi/2, (sintheta + sin 2theta)/(1+costheta + cos2theta) lies in the interval

Prove that: (sin^2theta)/(costheta)+ cos theta = sec theta.

Prove the following identity, where the angles involved are acute angles for which the expressions are defined. (vii) (sintheta-2sin^3theta)/(2cos^3theta-costheta)=tantheta

Prove that: (sin2theta)/(costheta cos3theta)+(sin4theta)/(cos3theta.cos5theta)+(sin6theta)/(cos5theta.cos7theta)+… to terms = 1/(2sintheta) [sec(2n+1)theta-sectheta]

(sin3theta-cos3theta)/(sintheta+costheta)+1 =

For -pi/2

Prove that: a) (sin2theta)/(1+cos2theta) = tantheta b) (1+sin2theta+cos2theta)/(1+sin2theta-cos2theta)=cottheta