Home
Class 12
MATHS
If alpha and beta the roots of the quadr...

If `alpha and beta` the roots of the quadratic equation, `x^(2)+x sintheta-2sintheta=0,theta in(0,(pi)/(2)),` then `(alpha^(12)+beta^(12))/((alpha^(-12)+beta^(-12))(alpha-beta)^(24))` is equal to

A

`(2^(12))/((sin theta+8)^(2))`

B

`(2^(6))/((sin theta+8)^(12))`

C

`(2^(12))/((sin theta-4)^(12))`

D

`(2^(12))/((sin theta-8)^(6))`

Text Solution

Verified by Experts

The correct Answer is:
A

Given quadratic equation is
`x^(2)+x sin theta -2 sintheta=0,theta in(0,(pi)/(2))`
and its roots are `alpha and beta.`
So, sum of roots `=alpha+beta=sin theta`
and product of roots `=alpha beta=-sin theta`
` implies " "alpha beta =2(alpha+beta)" "...(1)`
Now, the given expression is `(alpha^(12)+beta^(12))/((alpha^(-12)+beta^(-12))(alpha-beta)^(24))`
`=(alpha^(12)+beta^(12))/(((1)/(alpha^(12))+(1)/(beta^(12)))(alpha-beta)^(24))=(alpha^(12)+beta^(12))/(((beta^(12)+alpha^(12))/(alpha^(12)beta^(12)))(alpha-beta)^(24))`
`=[(alphabeta)/((alpha-beta)^(2))]^(12)=((alphabeta)/((alpha+beta)^(2)-4alphabeta))`
`=[(2(alpha+beta))/((alpha+beta)^(2)-8(alpha+beta))]^(12)" "["from Eq."(i)]`
`=((2)/((alpha+beta)-8))=((2)/(-sintheta-8))^(12)[becausealpha+beta=-sintheta]=(2^(12))/((sintheta+8)^(12))`
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha" and "beta are the roots of the quadratic equation 4x^(2)+3x+7=0 , then the value of (1)/(alpha)+(1)/(beta)=

If alpha and beta are the roots of quadratic equation x^(2)+5x-1=0 then, find (i) alpha^(3)+beta^(3) (ii) alpha^(2)+beta^(2)

If alpha and beta are the roots of the quadratic equcation x^(2)+sqrt2x+3=0 , form a quadratic polynomial with zeroes 1/alpha,1/beta .

If alpha and beta are the roots of the equation x^(2)-ax+b=0 ,find Q(b) (1)/(alpha)+(1)/(beta)

If alpha and beta are the roots of the equation x^(2)-ax+b=0 ,find Q (a)(alpha)/(beta)+(beta)/(alpha)

If alpha and beta are the roots of the quadratic equation x^(2) + sqrt(2) x + 3=0 form a quadratic equation with roots (1)/(alpha) and (1)/(beta)

If alpha" and "beta are the roots of the equation x^(2)+3x-4=0 , then (1)/(alpha)+(1)/(beta) is equal to

If alpha and beta are the roots of the quadratic equation 2x^2-7x+13=0 , construct a quadratic equation whose roots are alpha^2 and beta^2 .

If alpha and beta are the roots of the equation 3x^(2) - 5x + 2 = 0 , find the value of (i) (alpha)/(beta) + (beta)/(alpha) (ii) alpha-beta (iii) (alpha^(2))/(beta) + (beta^(2))/(alpha)