Home
Class 12
MATHS
Let alpha and beta two roots of the equa...

Let `alpha and beta` two roots of the equatins `x^(2)+2x+2=0.` then `alpha^(15)+beta^(15)` is equal to

A

256

B

512

C

`-256`

D

`-512`

Text Solution

Verified by Experts

The correct Answer is:
C

We have, `x^(2)+2x+2=0`
`implies=x(-2+-sqrt(4-8))/(2)"["because"roots of"ax^(2)+bx+c=0"are given by"x=(-b+-sqrt(b^(2)-4ac))/(2a)"]"`
`impliesx=-1+-i`
`Let alpha=-1+i and beta=-1-i.`
Then, `alpha^(15)+beta^(15)=(-1+i)^(15)+(-1-i)^(15)`
`=-"["(1-i)^(15)+(1+i)^(15)"]"`
`=-[{sqrt2((1)/(sqrt2)-(i)/(sqrt2))}^(15)+{sqrt2((1)/(sqrt2)+(i)/(sqrt2))}^(15)]`
`{:[(,{sqrt2(cos""(pi)/(4)-isin""(pi)/(4))}^(15)),(,+{sqrt2(cos""(15pi)/(4)+i sin""(pi)/(4))}^(15)):}]`
`=-(sqrt2)^(15)[(cos""(15)/(n)-i sin""(15pi)/(4))+(cos""(15pi)/(4)+i sin""(15pi)/(4))]`
[using De' Moivre's theorem (`cos theta +- i sin theta)^(n)=cos n theta +-isin ntheta, n in Z`]
`=-(sqrt2)[2cos""(15pi)/(4)]=(sqrt2)^(15)[2xx(1)/(sqrt2)]`
`" "[becausecos""(15pi)/(4)=cos(4pi-(pi)/(4))=cos""(pi)/(4)=(1)/(sqrt2)]=(sqrt2)^(16)=-2^(8)=-256.`
Alternate Method
`alpha^(15)+beta^(16)=(-1+i)^(15)+(-1-i)^(15)`
`=-"["(1-i)^(15)+(1+i)^(15)"]"`
`=-[(1-i)^(16)/(1-i)+((1+i))/(1+i)]`
`=-[("["(1-i)^(2)"]"^(8))/(1-i)+("["(1+i)^(2)"]"^(8))/(1+i)]`
`=-[([1+i^(2)-2i]^(8))/(1-i)+([1+i^(2)+2i]^(8))/(1+i)]`
`=-2^(8)[(1)/(1-i)+(1)/(1+i)]" "[becausei^(4n)=1,nin Z]`
`=-256[(2)/(1-(i)^(2))]=-256[(2)/(2)]=-256`
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha" and "beta are the roots of the equation x^(2)+3x-4=0 , then (1)/(alpha)+(1)/(beta) is equal to

If alpha, beta in C are distinct roots of the equation x^2-x+1=0 then alpha^(101)+beta^(107) is equal to

If alpha" and "beta are the roots of the equation x^(2)+2x+4=0, " then "(1)/(alpha^3)+(1)/(beta^3) is equal to

If alpha and beta are the roots of the equation x^(2) -1 =0 " then " (2alpha)/(beta ) + (2 beta)/(alpha) is equal to ..........

If alpha and beta are the roots of x^(2) + x + 1 = 0, then alpha^(2020) + beta^(2020) is

If alpha" and "beta are the roots of x^(2)-ax+b^(2)=0 , then alpha^(2)+beta^(2) is equal to

If alpha and beta are roots of the equation x^(2) + 2x + 8 = 0 the the value of (alpha)/(beta) + (beta)/(alpha) is ………….. .

If alpha and beta are the roots of the equation x^2 + 2x +8=0 then the value of (alpha)/(beta) + (beta)/(alpha) is ………………….. .

If alpha and beta are the roots of the equation x^(2)-ax+b=0 ,find Q(b) (1)/(alpha)+(1)/(beta)