Home
Class 12
MATHS
The sum of all real values of X satisfyi...

The sum of all real values of X satisfying the equation `(x^2-5x+5)^(x^2 + 4x -60) = 1` is:

A

3

B

`-4`

C

6

D

5

Text Solution

Verified by Experts

The correct Answer is:
A

Given, `I,(x^(2)-5x+5)^(x^(2)+4-60)=1`
Clearly, this is possible when
`I.x^(2)+4x-60=0and x^(2)-5x+5 ne0 or`
`II. x^(2)-5x+5=1`
`III x^(2)-5x+5=-1andx^(2)+4x-60=` Even integer.
Case I When `x^(2)+4x-60=0`
`implies x^(2)+10x-6x-60=0`
`implies x(x+10)-6(x+10)=0`
`impliesx=-10 or x=6`
Note that , for these two values of `x, x^(2)-5x+ 5 ne 0`
Case II When `x^(2)-5x+5=1`
`implies x^(2) -5x+4=0`
`implies x^(2)-4x-x+4=0`
`implies x(x-4)-1(x-4)=0`
`implies (x-4)(x-1)=0impliesx=4 or x=1`
Case III When `x^(2)+5=-1`
`impliesx^(2)-5x+6=0`
`implies x^(2)-2x-3x+6=0`
`implies x(x-2)-3(x-2)=0`
`implies (x-2)(x-3) =0`
`impliesx=2or x=3`
Now, when `x=x^(2)+4x-60=4+8-60=-48,` which is an even intege.
When `x=3, x^(2)+4x-60=9+12-60=-39,` which not an even integer.
Thus in this case, we get `x=2.`
Hance, the sum of all real values of
`x=-10+6+4+1+2=3`
Promotional Banner

Similar Questions

Explore conceptually related problems

The number of integral values of x satisfying the equation |x-|x-4||=4 is

The number of integral values of x satisfying the equation tan^(-1) (3x) + tan^(-1) (5x) = tan^(-1) (7x) + tan^(-1) (2x) is ____

Number of real values of x satisfying the equation log_(x^2+6x+8)(log_(2x^2+2x+3)(x^2-2x))=0 is equal to

The sum of all possible values of x satisfying the equation sin^(-1)(3x-4x^(3))+cos^(-1)(4x^(3)-3x)=(pi)/(2) is

The value of x which satisfies the equation 2x - (4-x) = 5 - x is

The set of all real values of x satisfying sin^(-1)sqrt(x)lt(pi)/(4) , is

Number of integral value(s) of ' x ' satisfying the equation |2 x+1|+|5-2 x|=6 , is

Number of real values of x satisfying the equation log_2(x^2-x)*log_2((x-1)/x)+(log_2x)^2=4 ,is (a) 0 (b) 2 (c) 3 (d) 7

Number of values of x satisfying the equation cos ^-1(x^2-.5 x+6)=2 cot ^-1(1) , is equal to

The value of x in ( 0, pi/2) satisfying the equation sin x cos x= 1/4 is