Home
Class 12
MATHS
Let alpha and beta be the roots of x^2-6...

Let `alpha` and `beta` be the roots of `x^2-6x-2=0` with `alpha>beta` if `a_n=alpha^n-beta^n` for ` n>=1` then the value of `(a_10 - 2a_8)/(2a_9)`

A

6

B

`-6`

C

3

D

`-3`

Text Solution

Verified by Experts

The correct Answer is:
C

Given, `alpha and beta` are the roots of the equation `x^(2)x6x-2=0.`
`therefore a_(n)=alpha^(n)-beta^(n)"for" n ge 1`
`alpha_(10)=alpha^(10)-beta^(10)`
`alpha_(8)=alpha^(8)-beta(8)`
`alpha+_(9)=alpha^(9)-beta^(9)`
Now, consider
`(alpha_(10)-2alpha_(8))/(2alpha_(9))=(alpha^(10)-beta^(10)-2(alpha^(8)-beta^(8)))/(2(alpha^(9)-alpha^(9)))=(alpha^(8)(alpha^(2)-2)-beta^(8)(beta^(2)-2))/(2(alpha^(9)beta^(9)))`
`=(alpha^(8).6 alpha-beta^(8)6 beta)/(2(alpha^(9)-beta^(9)))=(6alpha^(9)-6beta^(9))/(2(alpha^(9)-6beta^(9)))=6/2=3`
`[{:(,thereforealphaand beta"are the roots of"),(,x^(2)-6x-2=0orx^(2)=6x+2),(,impliesalpha^(2)=6alpha+2impliesalpha^(2)-2=6alpha),(,and beta^(2)=6beta+2impliesbeta^(2)-2=6beta):}]`
Alternate Solution
Since,`alpha and beta` are the roots of the equation
`x^(2)-6x-2=0.`
or `x^(2)=6x+2`
`therefore alpha^(2)=6alpha+2`
`impliesalpha^(10)=6alpha^(9)+2alpha^(8)" "...(i)`
Similarly, `beta^(10)=6beta^(9)+2beta^(8)" "...(ii)`
On subtracing Eq. (ii) from Eq. (i) we get
`alpha^(10)-beta^(10)=6(alpha^(9)-beta^(9))+2(alpha^(8)-beta^(8))(becausea_(n)=alpha^(n)-beta^(n))`
`impliesalpha_(10)-2alpha_(8)=6alpha_(9)implies(alpha_(10)-2alpha_(8))/(2alpha_(9))=3`
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha and beta are the roots of x^(2)+6x-4=0 , find the value of (alpha-beta)^(2) .

If alpha and beta are the roots of x^(2)+6x-4=0 , find the values of (alpha-beta)^(2) .

If alpha and beta are the roots of 2x^(2) – 3x -4 = 0 find the value of 2 alpha^(2)+ beta^(2)

If alpha" and "beta are the roots of x^(2)-ax+b^(2)=0 , then alpha^(2)+beta^(2) is equal to

If alpha and beta are roots of x^(2)+8x+10=0 then (alpha)/(beta)+(beta)/(alpha) is :

If alpha and beta are the roots of x^(2) + x + 1 = 0, then alpha^(2020) + beta^(2020) is

Let alpha and beta two roots of the equatins x^(2)+2x+2=0. then alpha^(15)+beta^(15) is equal to

If alpha, beta are the roots of x^(2) - px + q = 0 and alpha', beta' are the roots of x^(2) - p' x + q' = 0 , then the value of (alpha - alpha')^(2) + (beta + alpha')^(2) + (alpha - beta')^(2) + (beta - beta')^(2) is