Home
Class 12
MATHS
Let alpha and beta be the roots of equat...

Let `alpha and beta` be the roots of equation `px^2 + qx + r = 0 , p != 0`.If `p,q,r` are in A.P. and `1/alpha+1/beta=4`, then the value of `|alpha-beta|` is :

A

`(sqrt61)/(9)`

B

`(2sqrt17)/(9)`

C

`(sqrt34)/(9)`

D

`(2sqrt13)/(9)`

Text Solution

Verified by Experts

The correct Answer is:
D

If `ax^(2)+bx+c=0` has roots `alpha and beta,` then `alpha + beta=-b//aand alpha beta=c/a.` Find the values of `alpha + beta and alpha beta` and then put in `(alpha-beta)^(2)=(alpha+beta)^(2)-4alpha beta` to get required value.
Given `alpha and beta` are roots of `px^(2)+qx+r=0,p ne 0.`
`therefore alpha+beta=(-q)/(p)'alphabeta=r/p" "...(i)`
Since, p, q and r in AP.
`therefore 2q=p+r" "...(ii)`
Also, `(1)/(alpha)+(1)/(beta)=4implies(alpha+beta)/(alphabeta)=4`
`impliesalpha+beta=4 alphabetaimplies(-q)/(p)=(4r)/(p)" "["fromEq."(i)]`
`impliesq=-4t`
On putting the vaue of q in Eq. (ii) we get
`implies2(-4r)=p+rimpliesp=-9r`
Now, `alpha+beta=(-q)/(p)=(4r)/(p)=(4r)/(-9r)=-4/9`
and `alphabeta=r/b=(r)/(-9r)=(1)/(-9)`
`therefore(alpha-beta)^(2)=(alpha=beta)^(2)-4alphabeta=(16)/(81)+4/9=(16+36)/(81)`
`implies(alpha-beta)^(2)=52/81`
`implies|alpha-beta|=2/9sqrt13`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let alpha" and "beta be the roots of the equation px^(2)+qx+r=0 . If p,q, r in A.P. and alpha+beta=4 , then alpha beta is equal to

If alpha and beta are the roots of the equation 3x^(2) - 6x + 1 = 0 form the equation whose roots are (i) alpha^(2) beta, beta^(2) alpha (ii) 2 alpha + beta, 2beta + alpha

If x^(2)+px+q=0 has the roots alpha" and "beta , then the value of (alpha-beta)^(2) is equal to

If alpha" and "beta are the roots of the quadratic equation 4x^(2)+3x+7=0 , then the value of (1)/(alpha)+(1)/(beta)=

IF alpha and beta are the roots of the equation 3x^(2)-4x+1=0 , form the equation whose roots are alpha^(2)/beta and beta^(2)/alpha.

If alpha and beta are the roots of the equation x^(2)-ax+b=0 ,find Q(b) (1)/(alpha)+(1)/(beta)

If alpha and beta are the roots of the equation 3x^(2) - 5x + 2 = 0 , find the value of (i) (alpha)/(beta) + (beta)/(alpha) (ii) alpha-beta (iii) (alpha^(2))/(beta) + (beta^(2))/(alpha)