Home
Class 12
MATHS
The equation sqrt(x+1) - sqrt(x-1) = sqr...

The equation `sqrt(x+1) - sqrt(x-1) = sqrt(4x-1)` has

A

no solution

B

one solution

C

two solutions

D

more than two solutions

Text Solution

Verified by Experts

The correct Answer is:
A

Since `sqrt(x+1)-sqrt(x-1)=sqrt(4x-1)`
`implies(x+1)+(x-1)-2sqrt(x^(2)-1)=4x-1`
`implies1-2x=2sqrt(x^(2)-1)implies1+4x^(2)-4x=4x^(2)-4`
`implies 4x=5impliesx=5/4`
But it does not satisfy the given equation. Hence, no solution exists.
Promotional Banner

Similar Questions

Explore conceptually related problems

The number of solutions of the equation sqrt(x^(2))-sqrt((x-1)^(2))+sqrt((x-2)^(2))=sqrt(5) is

(1)/(sqrt(x+3)-sqrt(x-4))

The equation sqrt(1+log_(x) sqrt27) log_(3) x+1 = 0 has

Solve for x :sqrt(x+1)-sqrt(x-1)=1.

The number of real solution of the equation tan^(-1) sqrt(x^2-3x +7) + cos^(-1) sqrt(4x^2-x + 3) = pi is

The number of real solution of the equation tan^(-1) sqrt(x^(2) - 3x + 2) + cos^(-1) sqrt(4x - x^(2) -3) = pi is

intsqrt(e^x-1)dxi se q u a lto 2[sqrt(e^x-1)-tan^(-1)sqrt(e^x-1)]+c sqrt(e^x-1)-tan^(-1)sqrt(e^x-1)+c sqrt(e^x-1)+tan^(-1)sqrt(e^x-1)+c 2[sqrt(e^x-1)-tan^(-1)sqrt(e^x-1)]+c

Number of real solutions of sqrt(x)+sqrt(x-sqrt(1-x))=1 is

Evaluate int(1)/(sqrt(x+1)+sqrt(x))dx .

Evaluate: intsqrt((1-sqrt(x))/(1+sqrt(x)))dx